Research article

Refinement and corrigendum of bounds of fractional integral operators containing Mittag-Leffler functions

  • Received: 21 June 2020 Accepted: 25 August 2020 Published: 18 September 2020
  • MSC : 26D10, 31A10, 26A33

  • The main objective of this paper is to compute refinements of bounds of the generalized fractional integral operators containing an extended generalized Mittag-Leffler function in their kernels. The presented results also provide refinements of already known bounds of different fractional integral operators for convex, m-convex, s-convex and (s, m)-convex functions. Moreover, the refinements of some known fractional versions of the Hadamard inequality are given.

    Citation: Ghulam Farid, Maja Andrić, Maryam Saddiqa, Josip Pečarić, Chahn Yong Jung. Refinement and corrigendum of bounds of fractional integral operators containing Mittag-Leffler functions[J]. AIMS Mathematics, 2020, 5(6): 7332-7349. doi: 10.3934/math.2020469

    Related Papers:

  • The main objective of this paper is to compute refinements of bounds of the generalized fractional integral operators containing an extended generalized Mittag-Leffler function in their kernels. The presented results also provide refinements of already known bounds of different fractional integral operators for convex, m-convex, s-convex and (s, m)-convex functions. Moreover, the refinements of some known fractional versions of the Hadamard inequality are given.


    加载中


    [1] C. P. Niculescu, L. E. Persson, Convex functions and their applications: A contemporary approach, Springer Science & Business Media, Inc., 2006.
    [2] J. Pečarić, F. Proschan, Y. L. Tong, Convex functions, partial orderings, and statistical applications, Academics Press, New York, 1992.
    [3] A. W. Roberts, D. E. Varberg, Convex functions, Academic Press, New York, 1973.
    [4] B. T. Polyak, Existence theorems and convergence of minimizing sequences in extremum problems with restrictions, Soviet Math. Dokl., 7 (1966), 72-75.
    [5] J. P. Vial, Strong convexity of sets and functions, Math. Econom., 9 (1982), 187-205.
    [6] H. Hudzik, L. Maligranda, Some remarks on s-convex functions, Aequ. Math., 48 (1994), 100-111.
    [7] G. A. Anastassiou, Generalized fractional Hermite-Hadamard inequalities involving m-convexity and (s, m)-convexity, Ser. Math. Inform., 28 (2013), 107-126.
    [8] T. Lara, N. Merentes, R. Quintero, et al. On strongly m-convex functions, Math. Aeterna, 5 (2015), 521-535.
    [9] G. Farid, S. B. Akbar, S. U. Rehman, et al. Boundedness of fractional integral operators containing Mittag-Leffler functions via (s, m)-convexity, Aims Math., 5 (2020), 966-978.
    [10] M. Bracamonte, J. Giménez, M. Vivas-Cortez, Hermite-Hadamard-Fejér type inequalities for strongly (s, m)-convex functions with modulus c, in second sense, Appl. Math. Inf. Sci., 10 (2016), 2045-2053.
    [11] L. Chen, G. Farid, S. I. Butt, et al. Boundedness of fractional integral operators containing Mittag-Leffler functions, Turkish J. Ineq., 4 (2020), 14-24.
    [12] Z. Chen, G. Farid, A. U. Rehman, et al. Estimations of fractional integral operators for convex functions and related results, Adv. Diff. Equ., 2020 (2020), 2020: 163.
    [13] G. Farid, Some Riemann-Liouville fractional integral inequalities for convex functions, J. Anal., 27 (2019), 1095-1102.
    [14] G. Mittag-Leffler, Sur la nouvelle fonction Eα(x), C. R. Acad. Sci. Paris., 137 (1903), 554-558.
    [15] H. J. Haubold, A. M. Mathai, R. K. Saxena, Mittag-Leffler functions and their applications, J. Appl. Math., 2011 (2011), Article ID 298628.
    [16] M. Arshad, J. Choi, S. Mubeen, et al. A new extension of Mittag-Leffler function, Commun. Korean Math. Soc., 33 (2018), 549-560.
    [17] G. Rahman, D. Baleanu, M. A. Qurashi, et al. The extended Mittag-Leffler function via fractional calculus, J. Nonlinear Sci. Appl., 10 (2017), 4244-4253.
    [18] T. O. Salim, A. W. Faraj, A generalization of Mittag-Leffler function and integral operator associated with integral calculus, J. Frac. Calc. Appl., 3 (2012), 1-13.
    [19] A. K. Shukla, J. C. Prajapati, On a generalization of Mittag-Leffler function and its properties, J. Math. Anal. Appl., 336 (2007), 797-811.
    [20] M. Andrić, G. Farid, J. Pečarić, A further extension of Mittag-Leffler function, Fract. Calc. Appl. Anal., 21 (2018), 1377-1395.
    [21] T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J., 19 (1971), 7-15.
    [22] H. M. Srivastava, Z. Tomovski, Fractional calculus with an integral operator containing generalized Mittag- Leffler function in the kernel, Appl. Math. Comput., 211 (2009), 198-210.
    [23] S. Ullah, G. Farid, K. A. Khan, et al. Generalized fractional inequalities for quasi-convex functions, Adv. Difference Equ., 2019 (2019), 2019: 15.
    [24] G. Farid, K. A. Khan, N. Latif, et al. General fractional integral inequalities for convex and m-convex functions via an extended generalized Mittag-Leffler function, J. Inequal. Appl., 2018 (2018), 243.
    [25] G. Abbas, K. A. Khan, G. Farid, et al. Generalization of some fractional integral inequalities via generalized Mittag-Leffler function, J. Inequal. Appl., 2017 (2017), 121.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3169) PDF downloads(88) Cited by(2)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog