Research article

Hermite-Hadamard and Jensen’s type inequalities for modified (p, h)-convex functions

  • Received: 01 July 2020 Accepted: 19 August 2020 Published: 08 September 2020
  • MSC : 26A51, 26A33, 26D15

  • In this study, we will derive the conception of modified (p, h)-convex functions which will unify p-convexity with modified h-convexity. We will investigate the fundamental properties of modified (p, h)-convexity. Furthermore, we will derive the Hermite-Hadamard, Fejér and Jensen's type inequalities for this generalization.

    Citation: Baoli Feng, Mamoona Ghafoor, Yu Ming Chu, Muhammad Imran Qureshi, Xue Feng, Chuang Yao, Xing Qiao. Hermite-Hadamard and Jensen’s type inequalities for modified (p, h)-convex functions[J]. AIMS Mathematics, 2020, 5(6): 6959-6971. doi: 10.3934/math.2020446

    Related Papers:

  • In this study, we will derive the conception of modified (p, h)-convex functions which will unify p-convexity with modified h-convexity. We will investigate the fundamental properties of modified (p, h)-convexity. Furthermore, we will derive the Hermite-Hadamard, Fejér and Jensen's type inequalities for this generalization.


    加载中


    [1] G. Toader, Some generalization of the convexity, Proc. Colloqu. Approx. Optim. Cluj-Napoca., (1984), 329-338,
    [2] S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, John Wiley and Sons, USA, 1993.
    [3] G. Farid, W. Nazeer, M. S. Saleem, et al. Bounds of Riemann-Liouville fractional integrals in general form via convex functions and their applications, Mathematics, 6 (2018), 248.
    [4] Y. C. Kwun, M. S. Saleem, M. Ghafoor, et al. Hermite-Hadamard-type inequalities for functions whose derivatives are convex via fractional integrals, J. Inequal. Appl., 2019 (2019), 1-16. doi: 10.1186/s13660-019-1955-4
    [5] I. A. Baloch, S. S. Dragomir, New inequalities based on harmonic log-convex functions, Open J. Math. Anal., 3 (2019), 103-105. doi: 10.30538/psrp-oma2019.0043
    [6] W. Iqbal, K. M. Awan, A. U. Rehman, et al. An extension of Petrovic's inequality for (h-) convex ((h-) concave) functions in plane, Open J. Math. Sci., 3 (2019), 398-403. doi: 10.30538/oms2019.0082
    [7] S. Mehmood, G. Farid, K. A. Khan, et al. New fractional Hadamard and Fejer-Hadamard inequalities associated with exponentially (h, m)-convex functions, Eng. Appl. Sci. Lett., 3 (2020), 45-55. doi: 10.30538/psrp-easl2020.0034
    [8] M. K. Wang, Y. M. Chu, W. Zhang, Monotonicity and inequalities involving zero-balanced hypergeometric function, Math. Inequal. Appl., 22 (2019), 601-617.
    [9] Y. M. Chu, M. A. Khan, T. Ali, et al. Inequalities for a-fractional differentiable functions, J. Inequal. Appl., 2017 (2017), 1-12. doi: 10.1186/s13660-016-1272-0
    [10] C. Y. Jung, M. S. Saleem, W. Nazeer, et al. Unification of generalized and p-convexity, J. Funct. Spaces, 2020 (2020), 1-6.
    [11] D. Ucar, V. F. Hatipoglu, A. Akincali, Fractional integral inequalities on time scales, Open J. Math. Sci., 2 (2018), 361-370.
    [12] S. Zhao, S. I. Butt, W. Nazeer, et al. Some Hermite-Jensen-Mercer type inequalities for k-Caputofractional derivatives and related results, Adv. Differ. Equ., 2020 (2020), 1-17. doi: 10.1186/s13662-019-2438-0
    [13] H. Kadakal, M. Kadakal, I. Iscan, New type integral inequalities for three times differentiable preinvex and prequasiinvex functions, Open J. Math. Anal., 2 (2018), 33-46.
    [14] T. Zhao, M. S. Saleem, W. Nazeer, et al. On generalized strongly modified h-convexfunctions, J. Inequal. Appl., 2020 (2020), 1-12. doi: 10.1186/s13660-019-2265-6
    [15] S. Kermausuor, Simpson's type inequalities for strongly (s, m)-convex functions in the second sense and applications, Open J. Math. Sci., 3 (2019), 74-83.
    [16] Y. C. Kwun, G. Farid, W. Nazeer, et al. Generalized riemann-liouville k-fractional integrals associated with Ostrowski type inequalities and error bounds of hadamard inequalities, IEEE access, 6 (2018), 64946-64953. doi: 10.1109/ACCESS.2018.2878266
    [17] J. E. Pečarić, F. Proschan, Y. L. Tong, Convex Functions, Partial Ordering and Statistical Applications, Academic Press, New York, 1991.
    [18] K. S. Zhang, J. P. Wan, p-convex functions and their properties, Pure Appl. Math., 23 (2007), 130-133, .
    [19] E. M. Wright, An inequality for convex functions, Amer. Math. Monthly, 61 (1954), 620-622,
    [20] M. Z. Sarikaya, A. Saglam, H. Yildirim, On some Hadamard-Type ineualities for h-convex functions, J. Math. Inequal., 2 (2008), 335-341.
    [21] H. Bai, M. S. Saleem, W. Nazeer, et al. Hermite-Hadamard-and Jensen-type inequalities for interval nonconvex function, J. Math., 2020 (2020), 1-6.
    [22] X. M. Zhang, Y. M. Chu, X. H. Zhang, The Hermite-Hadamard type inequality of GA-convex functions and its application, J. Inequal. Appl., 2010 (2010), 1-11.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3798) PDF downloads(212) Cited by(5)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog