Citation: Baoli Feng, Mamoona Ghafoor, Yu Ming Chu, Muhammad Imran Qureshi, Xue Feng, Chuang Yao, Xing Qiao. Hermite-Hadamard and Jensen’s type inequalities for modified (p, h)-convex functions[J]. AIMS Mathematics, 2020, 5(6): 6959-6971. doi: 10.3934/math.2020446
[1] | G. Toader, Some generalization of the convexity, Proc. Colloqu. Approx. Optim. Cluj-Napoca., (1984), 329-338, |
[2] | S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, John Wiley and Sons, USA, 1993. |
[3] | G. Farid, W. Nazeer, M. S. Saleem, et al. Bounds of Riemann-Liouville fractional integrals in general form via convex functions and their applications, Mathematics, 6 (2018), 248. |
[4] | Y. C. Kwun, M. S. Saleem, M. Ghafoor, et al. Hermite-Hadamard-type inequalities for functions whose derivatives are convex via fractional integrals, J. Inequal. Appl., 2019 (2019), 1-16. doi: 10.1186/s13660-019-1955-4 |
[5] | I. A. Baloch, S. S. Dragomir, New inequalities based on harmonic log-convex functions, Open J. Math. Anal., 3 (2019), 103-105. doi: 10.30538/psrp-oma2019.0043 |
[6] | W. Iqbal, K. M. Awan, A. U. Rehman, et al. An extension of Petrovic's inequality for (h-) convex ((h-) concave) functions in plane, Open J. Math. Sci., 3 (2019), 398-403. doi: 10.30538/oms2019.0082 |
[7] | S. Mehmood, G. Farid, K. A. Khan, et al. New fractional Hadamard and Fejer-Hadamard inequalities associated with exponentially (h, m)-convex functions, Eng. Appl. Sci. Lett., 3 (2020), 45-55. doi: 10.30538/psrp-easl2020.0034 |
[8] | M. K. Wang, Y. M. Chu, W. Zhang, Monotonicity and inequalities involving zero-balanced hypergeometric function, Math. Inequal. Appl., 22 (2019), 601-617. |
[9] | Y. M. Chu, M. A. Khan, T. Ali, et al. Inequalities for a-fractional differentiable functions, J. Inequal. Appl., 2017 (2017), 1-12. doi: 10.1186/s13660-016-1272-0 |
[10] | C. Y. Jung, M. S. Saleem, W. Nazeer, et al. Unification of generalized and p-convexity, J. Funct. Spaces, 2020 (2020), 1-6. |
[11] | D. Ucar, V. F. Hatipoglu, A. Akincali, Fractional integral inequalities on time scales, Open J. Math. Sci., 2 (2018), 361-370. |
[12] | S. Zhao, S. I. Butt, W. Nazeer, et al. Some Hermite-Jensen-Mercer type inequalities for k-Caputofractional derivatives and related results, Adv. Differ. Equ., 2020 (2020), 1-17. doi: 10.1186/s13662-019-2438-0 |
[13] | H. Kadakal, M. Kadakal, I. Iscan, New type integral inequalities for three times differentiable preinvex and prequasiinvex functions, Open J. Math. Anal., 2 (2018), 33-46. |
[14] | T. Zhao, M. S. Saleem, W. Nazeer, et al. On generalized strongly modified h-convexfunctions, J. Inequal. Appl., 2020 (2020), 1-12. doi: 10.1186/s13660-019-2265-6 |
[15] | S. Kermausuor, Simpson's type inequalities for strongly (s, m)-convex functions in the second sense and applications, Open J. Math. Sci., 3 (2019), 74-83. |
[16] | Y. C. Kwun, G. Farid, W. Nazeer, et al. Generalized riemann-liouville k-fractional integrals associated with Ostrowski type inequalities and error bounds of hadamard inequalities, IEEE access, 6 (2018), 64946-64953. doi: 10.1109/ACCESS.2018.2878266 |
[17] | J. E. Pečarić, F. Proschan, Y. L. Tong, Convex Functions, Partial Ordering and Statistical Applications, Academic Press, New York, 1991. |
[18] | K. S. Zhang, J. P. Wan, p-convex functions and their properties, Pure Appl. Math., 23 (2007), 130-133, . |
[19] | E. M. Wright, An inequality for convex functions, Amer. Math. Monthly, 61 (1954), 620-622, |
[20] | M. Z. Sarikaya, A. Saglam, H. Yildirim, On some Hadamard-Type ineualities for h-convex functions, J. Math. Inequal., 2 (2008), 335-341. |
[21] | H. Bai, M. S. Saleem, W. Nazeer, et al. Hermite-Hadamard-and Jensen-type inequalities for interval nonconvex function, J. Math., 2020 (2020), 1-6. |
[22] | X. M. Zhang, Y. M. Chu, X. H. Zhang, The Hermite-Hadamard type inequality of GA-convex functions and its application, J. Inequal. Appl., 2010 (2010), 1-11. |