Research article

Applications of a differential operator to a class of harmonic mappings defined by Mittag-leffer functions

  • Received: 02 April 2020 Accepted: 26 August 2020 Published: 02 September 2020
  • MSC : 30C45, 30C50

  • Utilizing the concepts of Harmonic analysis and Mittag-Leffler functions we introduce a new subclass of harmonic mappings involving differential operator in domain of Janowski functions. Moreover, we investigate analytic criteria, necessary and sufficient conditions, topological properties, extreme points, radii problems and some applications of this work for the class of functions defined by this operator.

    Citation: Muhammad Ghaffar Khan, Bakhtiar Ahmad, Thabet Abdeljawad. Applications of a differential operator to a class of harmonic mappings defined by Mittag-leffer functions[J]. AIMS Mathematics, 2020, 5(6): 6782-6799. doi: 10.3934/math.2020436

    Related Papers:

  • Utilizing the concepts of Harmonic analysis and Mittag-Leffler functions we introduce a new subclass of harmonic mappings involving differential operator in domain of Janowski functions. Moreover, we investigate analytic criteria, necessary and sufficient conditions, topological properties, extreme points, radii problems and some applications of this work for the class of functions defined by this operator.


    加载中


    [1] B. A. Uralegaddi, M. D. Ganigi, S. M. Sarangi, Univalent functions with positive coefficients, Tamkang J. Math., 25 (1994), 225-230.
    [2] P. Duren, Harmonic mappings in the plane, Camb. Univ. Press, 2004.
    [3] A. L. Pathak, S. Porwal, R. Agarwal, et al. A subclass of harmonic univalent functions with positive coefficients associated with fractional calculus operator, J. Non-linear Anal. Appl., (2012), Article ID jnaa-00108, 11.
    [4] G. S. Salagean, Subclasses of univalent functions, Complex Analysis-Fifth Romanian Finish Seminar, Bucharest, 1 (1983), 362-372.
    [5] S. Porwal, K. K. Dixit, V. Kumar, et al. On a subclass of analytic functions defined by convolution, General Math., 19 (2011), 57-65.
    [6] J. M. Jahangiri, G. Murugusundaramoorthy, K. Vijaya, Salagean-type harmonic univalent functions, Southwest J. Pure Appl. Math., 2 (2002), 77-82.
    [7] S. Porwal, K. K. Dixit, New subclasses of harmonic starlike and convex functions, Kyungpook Math. J., 53 (2013), 467-478. doi: 10.5666/KMJ.2013.53.3.467
    [8] S. Porwal, K. K. Dixit, An application of certain convolution operator involving hypergeometric functions, J. Raj. Acad. Phy. Sci., 9 (2010), 173-186.
    [9] B. A. Uralegaddi, C. Somanatha, Certain classes of univalent functions, in Current topics in analytic function theory, World Sci. Publishing, River Edge, NJ.
    [10] S. Porwal, K. K. Dixit, A. L. Pathak, et al. A subclass of harmonic univalent functions with positive coefficients defined by generalized Salagean Operator, J. Raj. Acad. Phy. Sci., 11 (2012), 93-102.
    [11] M. K. Aouf, T. M. Seoudy, Subclasses of p-valent functions involving a new operator containing the generalized Mittag-Leffer function, Mediterr. J. Math., 15 (2018), 1-19. doi: 10.1007/s00009-017-1047-y
    [12] A. A. Attiya, Some applications of Mittag-Leffer function in the unit disc, Filomat, 30 (2016), 2075-2081. doi: 10.2298/FIL1607075A
    [13] D. Bansal, J. K. Prajapat, Certain geometric properties of Mittag-Leffer functions, Complex Var. Elliptic Eq., 61 (2016), 338-350. doi: 10.1080/17476933.2015.1079628
    [14] S. Elhaddad, H. Aldweby, M. Darus, New Majorization properties for subclass of analytic pvalent functions associated with generalized differential operator involving Mittag-Leffer function, Nonlinear Funct. Anal. Appl., 23 (2018), 743-753.
    [15] S. Elhaddad, M. Darus, On Meromorphic Functions Defined by a New Operator Containing the Mittag-Leffer function, Symmetry, 11 (2019), 210.
    [16] I. S. Gupta, L. Debnath, Some properties of the Mittag-Leffer functions, Integral Transform. Spec. Funct., 18 (2007), 329-336. doi: 10.1080/10652460601090216
    [17] S. Răducanu, Third-Order differential subordinations for analytic functions associated with generalized Mittag-Leffer functions, Mediterr. J. Math., 14 (2017), 18.
    [18] S. Răducanu, Partial sums of normalized Mittag-Leffer functions, An. St. Univ. Ovidius Constant, 25 (2017), 8.
    [19] H. M. Serivastava, B. A. Frasin, V. Pescar, Univalence of integral operators involving Mittag-Leffer functions, Appl. Math. Inf. Sci., 11 (2017), 635-641. doi: 10.18576/amis/110301
    [20] H. M. Serivastava, Z. Tomovski, Fractional calculus with an integral operator containing a generalized Mittag-Leffer function in the kernel, Appl. Math. Comput., 211 (2019), 198-210.
    [21] S. Ponnusamy, H. Silverman, Complex Variables with Applications, Birkh auser, Boston, 2006.
    [22] H. Lewy, On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc., 42 (1936).
    [23] J. Clunie, T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A. I. Math., 9 (1984), 3-25. doi: 10.5186/aasfm.1984.0905
    [24] T. Shiel-Small, Constants for planar harmonic mappings, J. London Math. Soc., 42 (1990), 237-248.
    [25] W. Janowski, Some extremal problems for certain families of analytic functions, Ann. Polon. Math., 28 (1973), 297-326. doi: 10.4064/ap-28-3-297-326
    [26] A. Wiman, Über den Fundamental satz in der Theorie der Funktionen Eα (x), Acta Math., 29 (1905), 191-201.
    [27] A. Wiman, Über die Nullstellun der Funktionen Eα (x), Acta Math., 29 (1905), 217-234.
    [28] S. Elhaddad, H. Aldweby, M. Darus, On certain subclasses of analytic functions involving differential operator, Jnanabha, 48 (2018), 55-64.
    [29] J. Dziok, On Janowski harmonic functions, J. Appl. Anal., 21 (2015), 99-107.
    [30] S. Elhaddad, H. Aldweby, M. Darus, On a subclass of harmonic univalent functions involving a new operator containing q-Mittag-Leffler function, 23 (2019), 833-847.
    [31] J. M. Jahangiri, Coefficient bounds and univalence criteria for harmonic functions with negative coefficients, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 52 (1998), 57-66.
    [32] J. M. Jahangiri, Harmonic functions starlike in the unit disc, J. Math. Anal. Appl., 235 (1999), 470-477. doi: 10.1006/jmaa.1999.6377
    [33] S. Ruscheweyh, Convolutions in Geometric Function Theory-Seminaire de Mathematiques Superieures, Gaetan Morin Editeur Ltee: Boucherville, QC, Canada, 1982.
    [34] H. Silverman, Harmonic univalent functions with negative coefficients, J. Math. Anal. Appl., 220 (1998), 283-289. doi: 10.1006/jmaa.1997.5882
    [35] M. Krein, D. Milman, On the extreme points of regularly convex sets, Stud. Math., 9 (1940), 133-138. doi: 10.4064/sm-9-1-133-138
    [36] P. Montel, Sur les families de functions analytiques qui admettent des valeurs exceptionelles dans un domaine, Ann. Sci. Ec. Norm. Super., 23 (1992), 487-535.
    [37] J. E. Littlewood, On inequalities in theory of functions, Proc. Lond. Math. Soc., 23 (1925), 481-519.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3301) PDF downloads(121) Cited by(2)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog