Research article

On stability and instability of standing waves for the inhomogeneous fractional Schrodinger equation

  • Received: 15 June 2020 Accepted: 27 July 2020 Published: 06 August 2020
  • MSC : 35Q55, 35B44

  • In this paper, we consider the stability and instability of standing waves for the inhomogeneous fractional Schrödinger equation $ i\partial_t\psi = (-\Delta)^s\psi- |x|^{-b}|\psi|^{2p}\psi. $ By applying the profile decomposition of bounded sequences in $H^s$ and variational methods, in the $L^2$-subcritical case, i.e., $0 \lt p \lt \frac{4s-2b}{N}$, we prove that the standing waves are orbitally stable. In the $L^2$-critical case, i.e., $p = \frac{4s-2b}{N}$, we show that the standing waves are strongly unstable by blow-up.

    Citation: Jiayin Liu. On stability and instability of standing waves for the inhomogeneous fractional Schrodinger equation[J]. AIMS Mathematics, 2020, 5(6): 6298-6312. doi: 10.3934/math.2020405

    Related Papers:

  • In this paper, we consider the stability and instability of standing waves for the inhomogeneous fractional Schrödinger equation $ i\partial_t\psi = (-\Delta)^s\psi- |x|^{-b}|\psi|^{2p}\psi. $ By applying the profile decomposition of bounded sequences in $H^s$ and variational methods, in the $L^2$-subcritical case, i.e., $0 \lt p \lt \frac{4s-2b}{N}$, we prove that the standing waves are orbitally stable. In the $L^2$-critical case, i.e., $p = \frac{4s-2b}{N}$, we show that the standing waves are strongly unstable by blow-up.


    加载中


    [1] N. Laskin, Fractional quantum mechanics and Lèvy path integrals, Phys. Lett. A, 268 (2000), 298-304. doi: 10.1016/S0375-9601(00)00201-2
    [2] N. Laskin, Fractional Schrödinger equations, Phys. Rev. E, 66 (2002), 056108.
    [3] T. Boulenger, D. Himmelsbach, E. Lenzmann, Blowup for fractional NLS, J. Funct. Anal., 271 (2016), 2569-2603. doi: 10.1016/j.jfa.2016.08.011
    [4] B. Wang, Y. Wang, Fractional white noise functional soliton solutions of a wick-type stochastic fractional NLSE, Appl. Math. Lett., 110 (2020), 106583.
    [5] G. Wu, C. Dai, Nonautonomous soliton solutions of variable-coefficient fractional nonlinear Schrödinger equation, Appl. Math. Lett., 106 (2020), 106365.
    [6] C. Dai, J. Zhang, Controlling effect of vector and scalar crossed double-Ma breathers in a partially nonlocal nonlinear medium with a linear potential, Nonlinear Dyn., 100 (2020), 1621-1628. doi: 10.1007/s11071-020-05603-9
    [7] L. Yu, G. Wu, Y. Wang, et al. Traveling wave solutions constructed by Mittag-Leffler function of a (2 + 1)-dimensional space-time fractional NLS equation, Results Phys., 17 (2020), 103156.
    [8] Y. Cho, H. Hajaiej, G. Hwang, et al. On the Cauchy problem of fractional Schrödinger equations with Hartree type nonlimearity, Funkcial. Ekvac., 56 (2013), 193-224. doi: 10.1619/fesi.56.193
    [9] Y. Cho, H. Hajaiej, G. Hwang, et al. On the orbital stability of fractional Schrödinger equations, Commun. Pure Appl. Anal., 13 (2013), 1267-1282.
    [10] Y. Cho, G. Hwang, S. Kwon, et al. Profile decompositions and Blow-up phenomena of mass critical fractional Schrödinger equations, Nonlinear Anal., 86 (2013), 12-29. doi: 10.1016/j.na.2013.03.002
    [11] Y. Cho, G. Hwang, S. Kwon, et al. On finite time blow-up for the mass-critical Hartree equations, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015), 467-479. doi: 10.1017/S030821051300142X
    [12] Y. Cho, G. Hwang, S. Kwon, et al. Well-posedness and ill-posedness for the cubic fractional Schrödinger equations, Discrete Contin. Dyn. Syst., 35 (2015), 2863-2880. doi: 10.3934/dcds.2015.35.2863
    [13] V. D. Dinh, Well-posedness of nonlinear fractional Schrödinger and wave equations in Sobolev spaces, Int. J. Appl. Math., 31 (2018), 483-525.
    [14] V. D. Dinh, A study on blowup solutions to the focusing L2-supercritical nonlinear fractional Schrödinger equation, J. Math. Phys., 59 (2018), 071506.
    [15] V. D. Dinh, B. Feng, On fractional nonlinear Schrödinger equation with combined power-type nonlinearities, Discrete Contin. Dyn. Syst., 39 (2019), 4565-4612. doi: 10.3934/dcds.2019188
    [16] B. Feng, On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities, Comm. Pure Appl. Anal., 17 (2018), 1785-1804. doi: 10.3934/cpaa.2018085
    [17] B. Feng, J. Ren, Q. Wang, Existence and instability of normalized standing waves for the fractional Schrödinger equations in the L2-supercritical case, J. Math. Phys., 61 (2020), 071511.
    [18] S. Zhu, Existence of stable standing waves for the fractional Schrödinger equations with combined nonlinearities, J. Evol. Equations, 17 (2017), 1003-1021. doi: 10.1007/s00028-016-0363-1
    [19] B. Feng, H. Zhang, Stability of standing waves for the fractional Schrödinger-Choquard equation, Comput. Math. Appl., 75 (2018), 2499-2507. doi: 10.1016/j.camwa.2017.12.025
    [20] B. Feng, H. Zhang, Stability of standing waves for the fractional Schrödinger-Hartree equation, J. Math. Anal. Appl., 460 (2018), 352-364. doi: 10.1016/j.jmaa.2017.11.060
    [21] Q. Guo, S. Zhu, Sharp threshold of blow-up and scattering for the fractional Hartree equation, J. Differ. Equations, 264 (2018), 2802-2832. doi: 10.1016/j.jde.2017.11.001
    [22] Y. Hong, Y. Sire, On fractional Schrödinger equations in Sobolev spaces, Commun. Pure Appl. Anal., 14 (2015), 2265-2282. doi: 10.3934/cpaa.2015.14.2265
    [23] J. Zhang, S. Zhu, Stability of standing waves for the nonlinear fractional Schrödinger equation, J. Dyn. Differ. Equations, 29 (2017), 1017-1030. doi: 10.1007/s10884-015-9477-3
    [24] S. Zhu, On the blow-up solutions for the nonlinear fractional Schrödinger equation, J. Differ. Equations, 261 (2016), 1506-1531. doi: 10.1016/j.jde.2016.04.007
    [25] B. Feng, R. Chen, J. Ren, Existence of stable standing waves for the fractional Schrödinger equations with combined power-type and Choquard-type nonlinearities, J. Math. Phys., 60 (2019), 051512.
    [26] T. Saanouni, Remarks on damped fractional Schrödinger equation with pure power nonlinearity, J. Math. Phys., 56 (2015), 061502.
    [27] T. Saanouni, Remarks on the inhomogeneous fractional nonlinear Schrödinger equation, J. Math. Phys., 57 (2016), 081503.
    [28] T. Saanouni, Strong instability of standing waves for the fractional Choquard equation, J. Math. Phys., 59 (2018), 081509.
    [29] B. Feng, R. Chen, J. Liu, Blow-up criteria and instability of normalized standing waves for the fractional Schrödinger-Choquard equation, Adv. Nonlinear Anal., 10 (2021), 311-330.
    [30] I. V. Barashenkov, N. V. Alexeeva, E. V. Zemlianaya, Two and three dimensional oscillons in nonlinear Faradey resonance, Phys. Rev. Lett., 89 (2002), 104101.
    [31] T. S. Gill, Optical guiding of laser beam in nonuniform plasma, Pramana, 55 (2000), 835-842. doi: 10.1007/s12043-000-0051-z
    [32] C. S. Liu, V. K. Tripathi, Laser guiding in an axially nonuniform plasma channel, Phys. Plasmas, 1 (1994), 3100-3103. doi: 10.1063/1.870501
    [33] F. Genoud, C.A. Stuart, Schrödinger equations with a spatially decaying nonlinearity: Existence and stability of standing waves, Discrete Contin. Dyn. Syst., 21 (2008), 137-286. doi: 10.3934/dcds.2008.21.137
    [34] T. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 10 (2003).
    [35] F. Genoud, Bifurcation and stability of travelling waves in self-focusing planar waveguides, Adv. Nonlinear Stud., 10 (2010), 357-400.
    [36] L. G. Farah, Global well-posedness and blow-up on the energy space for the inhomogeneous nonlinear Schrödinger equation, J. Evol. Equations, 16 (2016), 193-208.37. L. G. Farah, C. M. Guzman, Scattering for the radial focusing INLS equation in higher dimensions, doi: 10.1007/s00028-015-0298-y
    [37] 2017. preprint arXiv:1703.10 988.
    [38] L. G. Farah, C. M. Guzman, et al. Scattering for the radial 3D cubic focusing inhomogeneous nonlinear Schrödinger equation, J. Differ. Equations, 262 (2017), 4175-4231. doi: 10.1016/j.jde.2017.01.013
    [39] V. D. Dinh, Blowup of H1 solutions for a class of the focusing inhomogeneous nonlinear Schrödinger equation, Nonlinear Anal., 174 (2018), 169-188. doi: 10.1016/j.na.2018.04.024
    [40] T. Cazenave, P. L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Commun. Math. Phys., 85 (1982), 549-561. doi: 10.1007/BF01403504
    [41] A. Bensouilah, V. D. Dinh, S. H. Zhu, On stability and instability of standing waves for the nonlinear Schrödinger equation with an inverse-square potential, J. Math. Phys., 59 (2018), 101505.
    [42] B. Feng, R. Chen, Q. Wang, Instability of standing waves for the nonlinear Schrödinger-Poisson equation in the L2-critical case, J. Dyn. Differ. Equations, 32 (2020), 1357-1370. doi: 10.1007/s10884-019-09779-6
    [43] B. Feng, J. Liu, H. Niu, et al. Strong instability of standing waves for a fourth-order nonlinear Schrödinger equation with the mixed dispersions, Nonlinear Anal., 196 (2020), 111791.
    [44] C. Peng, D. Zhao, Global existence and blowup on the energy space for the inhomogeneous fractional nonlinear Schrödinger equation, Discrete Contin. Dyn. Syst. B, 24 (2019), 3335-3356. doi: 10.3934/dcdsb.2018323
    [45] B. Feng, On the blow-up solutions for the nonlinear Schrödinger equation with combined powertype nonlinearities, J. Evol. Equations, 18 (2018), 203-220. doi: 10.1007/s00028-017-0397-z
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3207) PDF downloads(261) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog