Research article

On Opial-Traple type inequalities for β-partial derivatives

  • Received: 30 April 2020 Accepted: 30 June 2020 Published: 09 July 2020
  • MSC : 26A33, 26D125

  • In the paper, we introduce a new partial derivative call it β-partial derivatives as the most natural extensions of the limit definitions of the partial derivative and the β-derivative, which obeys classical properties including: continuity, linearity, product rule, quotient rule, power rule, chain rule and vanishing derivatives for constant functions. As applications, we establish some new Opial-Traple type inequalities for the β-partial derivatives.

    Citation: Chang-Jian Zhao, Wing-Sum Cheung. On Opial-Traple type inequalities for β-partial derivatives[J]. AIMS Mathematics, 2020, 5(6): 5716-5723. doi: 10.3934/math.2020366

    Related Papers:

  • In the paper, we introduce a new partial derivative call it β-partial derivatives as the most natural extensions of the limit definitions of the partial derivative and the β-derivative, which obeys classical properties including: continuity, linearity, product rule, quotient rule, power rule, chain rule and vanishing derivatives for constant functions. As applications, we establish some new Opial-Traple type inequalities for the β-partial derivatives.


    加载中


    [1] U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218 (2011), 860-865.
    [2] U. N. Katugampola, A New approach to generalized fractional derivatives, B. Math. Anal. App., 6 (2014), 1-15.
    [3] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier B. V., Amsterdam, Netherlands, 2006.
    [4] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordonand Breach, Yverdon et alibi, 1993.
    [5] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57-66. doi: 10.1016/j.cam.2014.10.016
    [6] U. Katugampola, A new fractional derivative with classical properties, J. Amer. Math. Soc., in press.
    [7] R. Khalil, M. Al horani, A. Yousef, et al. A new denition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70. doi: 10.1016/j.cam.2014.01.002
    [8] D. R. Anderson, D. J. Ulness, Results for conformable differential equations, preprint, 2016.
    [9] A. Atangana, D. Baleanu, A. Alsaedi, New properties of conformable derivative, Open Math., 13 (2015), 889-898.
    [10] O. S. Iyiola, E. R. Nwaeze, Some new results on the new conformable fractional calculus with application using D'Alambert approach, Progr. Fract. Differ. Appl., 2 (2016), 115-122. doi: 10.18576/pfda/020204
    [11] A. Zheng, Y. Feng, W. Wang, The Hyers-Ulam stability of the conformable fractional differential equation, Mathematica Aeterna, 5 (2015), 485-492.
    [12] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57-66. doi: 10.1016/j.cam.2014.10.016
    [13] M. Z. Sarikaya, H. Budak, New inequalities of Opial type for conformable fractionalintegrals, Turkish J. Math., 41 (2017), 1164-1173. doi: 10.3906/mat-1606-91
    [14] J. Traple, On a boundary value problem for systems of ordinary differential equations of second order, Zeszyty Nauk. Univ. Jagiello. Prace Mat., 5 (1971), 159-168.
    [15] M. Z. Sarikaya, C. C. Bilisik, Some Opial type inequalities for conformable fractionalintegrals, AIP Conference Proceedings, 1991 (2018), 020013.
    [16] M. Z. Sarikaya, H. Budak, Opial type inequalities for conformable fractional integrals, J. Appl. Anal.,, 25 (2019), 155-163. doi: 10.1515/jaa-2019-0016
    [17] M. Z. Sarikaya, H. Budak, F. Usta, On generalized the conformable fractional calculus, preprint, 2016.
    [18] A. Atangana, E. F. D. Goufo, Extension of matched asymptotic method to fractional boundary layers problems, Math. Probl. Eng., 2014 (2014), 1-7.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2829) PDF downloads(170) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog