Citation: Chang-Jian Zhao, Wing-Sum Cheung. On Opial-Traple type inequalities for β-partial derivatives[J]. AIMS Mathematics, 2020, 5(6): 5716-5723. doi: 10.3934/math.2020366
[1] | U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218 (2011), 860-865. |
[2] | U. N. Katugampola, A New approach to generalized fractional derivatives, B. Math. Anal. App., 6 (2014), 1-15. |
[3] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier B. V., Amsterdam, Netherlands, 2006. |
[4] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordonand Breach, Yverdon et alibi, 1993. |
[5] | T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57-66. doi: 10.1016/j.cam.2014.10.016 |
[6] | U. Katugampola, A new fractional derivative with classical properties, J. Amer. Math. Soc., in press. |
[7] | R. Khalil, M. Al horani, A. Yousef, et al. A new denition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70. doi: 10.1016/j.cam.2014.01.002 |
[8] | D. R. Anderson, D. J. Ulness, Results for conformable differential equations, preprint, 2016. |
[9] | A. Atangana, D. Baleanu, A. Alsaedi, New properties of conformable derivative, Open Math., 13 (2015), 889-898. |
[10] | O. S. Iyiola, E. R. Nwaeze, Some new results on the new conformable fractional calculus with application using D'Alambert approach, Progr. Fract. Differ. Appl., 2 (2016), 115-122. doi: 10.18576/pfda/020204 |
[11] | A. Zheng, Y. Feng, W. Wang, The Hyers-Ulam stability of the conformable fractional differential equation, Mathematica Aeterna, 5 (2015), 485-492. |
[12] | T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57-66. doi: 10.1016/j.cam.2014.10.016 |
[13] | M. Z. Sarikaya, H. Budak, New inequalities of Opial type for conformable fractionalintegrals, Turkish J. Math., 41 (2017), 1164-1173. doi: 10.3906/mat-1606-91 |
[14] | J. Traple, On a boundary value problem for systems of ordinary differential equations of second order, Zeszyty Nauk. Univ. Jagiello. Prace Mat., 5 (1971), 159-168. |
[15] | M. Z. Sarikaya, C. C. Bilisik, Some Opial type inequalities for conformable fractionalintegrals, AIP Conference Proceedings, 1991 (2018), 020013. |
[16] | M. Z. Sarikaya, H. Budak, Opial type inequalities for conformable fractional integrals, J. Appl. Anal.,, 25 (2019), 155-163. doi: 10.1515/jaa-2019-0016 |
[17] | M. Z. Sarikaya, H. Budak, F. Usta, On generalized the conformable fractional calculus, preprint, 2016. |
[18] | A. Atangana, E. F. D. Goufo, Extension of matched asymptotic method to fractional boundary layers problems, Math. Probl. Eng., 2014 (2014), 1-7. |