Research article Special Issues

Does nonuniform behavior destroy the structural stability?

  • Received: 13 May 2020 Accepted: 23 June 2020 Published: 01 July 2020
  • MSC : 37F15, 34D09, 37B55, 37D25

  • This paper provides an answer if the nonuniform behavior can destroy the structural stability of nonlinear systems. We show that if the linear system $\dot{x}(t) = A(t)x(t)$ admits a nonuniform exponential dichotomy, then the perturbed nonautonomous system $\dot{x}(t) = A(t)x(t)+f(t, x)$ is structurally stable under suitable conditions.

    Citation: Yuzhen Bai, Donal O’Regan, Yong-Hui Xia, Xiaoqing Yuan. Does nonuniform behavior destroy the structural stability?[J]. AIMS Mathematics, 2020, 5(6): 5628-5638. doi: 10.3934/math.2020359

    Related Papers:

  • This paper provides an answer if the nonuniform behavior can destroy the structural stability of nonlinear systems. We show that if the linear system $\dot{x}(t) = A(t)x(t)$ admits a nonuniform exponential dichotomy, then the perturbed nonautonomous system $\dot{x}(t) = A(t)x(t)+f(t, x)$ is structurally stable under suitable conditions.


    加载中


    [1] L. Barreira, Ya. Pesin, Nonuniform hyperbolicity, Encyclopedia of Mathematics and Its Applications, 115, Cambridge University Press, 2007.
    [2] L. Barreira, C. Valls, Stability of Nonautonomous Differential Equations,Lecture Notes in Mathematics, vol. 1926, Springer, 2008.
    [3] J. Chu, Robustness of nonuniform behavior for discrete dynamics, Bull. Sci. Math., 137 (2013), 1031-1047. doi: 10.1016/j.bulsci.2013.03.003
    [4] J. Chu, F. Liao, S. Siegmund, et al. Nonuniform dichotomy spectrum and reducibility for nonautonomous equations, Bull. Sci. Math., 139 (2015), 538-557. doi: 10.1016/j.bulsci.2014.11.002
    [5] J. Zhang, M. Fan, H. Zhu, Nonuniform (h,k,u,v)-dichotomy with applications to nonautonomous dynamical systems, J. Math. Anal. Appl., 452 (2017), 505-551. doi: 10.1016/j.jmaa.2017.02.064
    [6] J. Zhang, M. Fan, H. Zhu, Existence and roughness of exponential dichotomies of linear dynamic equations on time scales, Comput. Math. Appl., 59 (2010), 2658-2675. doi: 10.1016/j.camwa.2010.01.035
    [7] O. Perron, Die stabilitsfrage bei differentialgleichungen, Math. Z., 32 (1930), 703-728. doi: 10.1007/BF01194662
    [8] W. A. Coppel, Dichotomies in stability theory, Lecture Notes in Mathematics, Springer, Berlin, Germany, 1978.
    [9] Y. Gao, Y. Xia, X.Yuan, et al. Linearization of nonautonomous impulsive system with nonuniform exponential dichotomy, Abstr. Appl. Anal., Volume 2014, Article ID 860378, 7 pages.
    [10] J. Hong, R. Yuan, Z. J. Jing, Exponential dichotomies, almost periodic structurally stable differential systems, and an example, J. Math. Anal. Appl., 208 (1997), 71-84. doi: 10.1006/jmaa.1997.5290
    [11] L. Jiang, Generalized exponential dichotomy and global linearization, J. Math. Anal. Appl., 315 (2006), 474-490. doi: 10.1016/j.jmaa.2005.05.042
    [12] S. G. Kryzhevich, V. A. Pliss, Structural stability of nonautonomous systems, Differential Equations, 39 (2003), 1395-1403. doi: 10.1023/B:DIEQ.0000017913.79915.b1
    [13] F. Lin, Exponential dichotomies, Anhui University Press, Hefei, China, 1999 (in Chinese).
    [14] F. Lin, Almost periodic structural stability of almost periodic differential equations, Ann. Diff. Equat., 5 (1989), 35-50.
    [15] K. Lu, Structural stability for scalar parabolic equations, J. Differential Equations, 114 (1994), 253-271. doi: 10.1006/jdeq.1994.1150
    [16] L. Markus, Structurally stable differential systems, Ann. Math., 73 (1961), 1-19. doi: 10.2307/1970280
    [17] K. J. Palmer, The structurally stable linear systems on the half-line are those with exponential dichotomies, J. Differential Equations, 33 (1979), 16-25. doi: 10.1016/0022-0396(79)90076-7
    [18] J. Kurzweil, G. Papaschinopoulos, Structural stability of linear discrete systems via the exponential dichotomy, Czech. Math. J., 38 (1988), 280-284.
    [19] G. Papaschinopoulos, G. Schinas, Structural stability via the density of a class of linear discrete systems, J. Math. Anal. Appl., 127 (1987), 530-539. doi: 10.1016/0022-247X(87)90127-2
    [20] J. Wang, M. Fěckan, Y. Zhou, Center stable manifold for planar fractional damped equations, Appl. Math. Comput., 296 (2017), 257-269.
    [21] J. Wang, M. Li, M. Fěckan, Robustness for linear evolution equations with non-instantaneous impulsive effects, Bull. Sci. Math., 159 (2020), 102827.
    [22] L. Popescu, Topological classification and structural stability of strongly continuous groups, Integr. Equ. Oper. Theory, 79 (2014), 355-375. doi: 10.1007/s00020-014-2152-y
    [23] J. Shi, J. Zhang, The Principle of Classification for Differential Equations, Science Press, Beijing, 2003 (in Chinese).
    [24] J. C. Willems, Topological classification and structural stability of linear systems, J. Differential Equations, 35 (1980), 306-318. doi: 10.1016/0022-0396(80)90031-5
    [25] Y. Xia, X. Chen, V. G. Romanovski, On the linearization theorem of Fenner and Pinto, J. Math. Anal. Appl., 400 (2013), 439-451. doi: 10.1016/j.jmaa.2012.11.034
    [26] Y. Xia, R. Wang, K. Kou, et al. On the linearization theorem for nonautonomous differential equations, Bull. Sci. Math., 139 (2015), 820-846.
    [27] Y. Xia, Y. Bai, D. O'Regan, A new method to prove the nonuniform dichotomy spectrum theorem in Rn, Proc. Amer. Math. Soc., 149 (2019), 3905-3917.
    [28] C. Zou, Y. Xia, M. pinto, et al. Boundness and Linearisation of a class of differential equations with piecewise constant argument, Qual. Theor. Dyna. Syst., 18 (2019), 495-531. doi: 10.1007/s12346-018-0297-9
    [29] C. Zou, Y. Xia, M. Pinto, Hölder Continuity of Topological Equivalence Functions of DEPCAGs, Sci. China Math., 50 (2020), 847-872.
    [30] A. Algaba, N. Fuentes, E. Gamero, et al. Structural stability of planar quasi-homogeneous vector fields, J. Math. Anal. Appl., 468 (2018), 212-226. doi: 10.1016/j.jmaa.2018.08.005
    [31] X. Jarque, J. Llibre, Structural stability of planar Hamiltonian polynomial vector fields, Proc. Lond. Math. Soc., 68 (1994), 617-640.
    [32] J. Llibre, J. P. del Río, J. A. Rodríguez, Structural stability of planar homogeneous polynomial vector fields: Applications to critical points and to infinity, J. Differential Equations, 125 (1996), 490-520. doi: 10.1006/jdeq.1996.0038
    [33] J. Llibre, del Río, J. A. Rodríguez, Structural stability of planar semi-homogeneous polynomial vector fields: Applications to critical points and to infinity, Discrete Contin. Dyn. Syst., 6 (2000), 809-828. doi: 10.3934/dcds.2000.6.809
    [34] D. S. Shafer, Structure and stability of gradient polynomial vector fields, J. Lond. Math. Soc., 41 (1990), 109-121.
    [35] G. Wang, Y. L. Cao, Dynamical spectrum in random dynamical systems, J. Dynamic. Diff. Equat., 26 (2014), 1-20. doi: 10.1007/s10884-013-9340-3
    [36] R. Oliveira, Y. Zhao, Structural stability of planar quasi-homogeneous vector fields, Qual. Theory Dyn. Syst., 13 (2014), 39-72. doi: 10.1007/s12346-013-0105-5
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3101) PDF downloads(209) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog