Research article

On approximate solution of lattice functional equations in Banach f-algebras

  • Received: 08 June 2020 Accepted: 22 June 2020 Published: 24 June 2020
  • MSC : 39B82, 46A40, 97H50, 46B422

  • The aim of the current manuscript is to prove the Hyers-Ulam stability of supremum, infimum and multiplication preserving functional equations in Banach f -algebras. In fact, by using the direct method and the fixed point method, the Hyers-Ulam stability of the functional equations is proved.

    Citation: Ehsan Movahednia, Young Cho, Choonkil Park, Siriluk Paokanta. On approximate solution of lattice functional equations in Banach f-algebras[J]. AIMS Mathematics, 2020, 5(6): 5458-5469. doi: 10.3934/math.2020350

    Related Papers:

  • The aim of the current manuscript is to prove the Hyers-Ulam stability of supremum, infimum and multiplication preserving functional equations in Banach f -algebras. In fact, by using the direct method and the fixed point method, the Hyers-Ulam stability of the functional equations is proved.


    加载中


    [1] C. D. Aliprantis and O. Burkinshaw, Positive Operators, Springer, Dordrecht, 2006.
    [2] S. J. Bernau and C. B. Huijsmans, Almost f-algebras and d-algebras, Math. Proc. Cambridge Philoso. Soc., 107 (1990), 287-308. doi: 10.1017/S0305004100068560
    [3] F. Beukers, C. B. Huijsmans and B. D. Pagter, Unital embedding and complexification of falgebras, Math. Z., 183 (1983), 131-144. doi: 10.1007/BF01187219
    [4] A. Bodaghi and S. Kim, Ulam's type stability of a functional equation derivaing from quadratic and additive functions, J. Math. Inequal., 9 (2015), 73-84.
    [5] J. Brzdkek, L. Cadariu and K. Cieplinski, Fixed point theory and the Ulam stability, J. Funct. Spaces, 2014 (2014), 829419.
    [6] L. Cadariu and V. Radu, Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure Appl. Math., 4 (2003), 4.
    [7] V. Govindan, C. Park, S. Pinelas, et al. Solution of a 3-D cubic functional equation and its stability, AIMS Math., 5 (2020), 1693-1705.
    [8] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA, 27 (1941), 222-224.
    [9] S. Jung, Hyers-Ulam-Rassias stability of Jensen's equation and its application, Proc. Am. Math. Soc., 126 (1998), 3137-3143. doi: 10.1090/S0002-9939-98-04680-2
    [10] S. Jung, D. Popa and M. Th. Rassias, On the stability of the linear functional equation in a single variable on complete metric spaces, J. Global Optim., 59 (2014), 13-16.
    [11] Y. Lee, S. Jung and M. Th. Rassias, Uniqueness theorems on functional inequalities concerning cubic-quadratic-additive equation, J. Math. Inequal., 12 (2018), 43-61.
    [12] P. Meyer-Nieberg, Banach Lattices, Springer-Verlag, Berlin, 1991.
    [13] E. Movahednia, Fuzzy stability of quadratic functional equations in general cases, ISRN Math. Anal., 10 (2011), 553-560.
    [14] E. Movahednia, S. M. S. Modarres Mosadegh, C. Park, et al. Stability of a lattice preserving functional equation on Riesz space: Fixed point alternative, J. Comput. Anal. Appl., 21 (2016), 83-89.
    [15] E. Movahednia and M. Mursaleen, Stability of a generalized quadratic functional equation in intuitionistic fuzzy 2-normed space, Filomat, 30 (2016), 449-457. doi: 10.2298/FIL1602449M
    [16] V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory, 4 (2003), 91-96.
    [17] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Am. Math. Soc., 72 (1978), 297-300. doi: 10.1090/S0002-9939-1978-0507327-1
    [18] F. Riesz, Sur la decomposition des opérations fonctionnelles linéaires, Atti Congr. Internaz. Mat. Bologna, 3 (1930), 143-148.
    [19] H. H. Schaefer, Banach Lattices and Positive Operators, Springer-Verlag, New York, Heidelberg, 1974.
    [20] S. M. Ulam, A Collection of Mathematical Problems, Interscience Publishers Inc., New York, 1960.
    [21] A. Uyar, On Banach lattice algebras, Turkish J. Math., 29 (2005), 287-290.
    [22] A. W. Wickstead, Characterisations of semi-prime archimedean f-algebras, Math. Z., 200 (1989), 353-354.
    [23] R. Yilmaz and A. Yilmaz, On Banach lattice algebras, VFAST Trans. Math., 5 (2015), 1-9.
    [24] A. C. Zaanen, Introduction to Operator Theory in Riesz Spaces, Springer-Verlag, Berlin, 1997.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3462) PDF downloads(294) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog