Citation: Ehsan Movahednia, Young Cho, Choonkil Park, Siriluk Paokanta. On approximate solution of lattice functional equations in Banach f-algebras[J]. AIMS Mathematics, 2020, 5(6): 5458-5469. doi: 10.3934/math.2020350
[1] | C. D. Aliprantis and O. Burkinshaw, Positive Operators, Springer, Dordrecht, 2006. |
[2] | S. J. Bernau and C. B. Huijsmans, Almost f-algebras and d-algebras, Math. Proc. Cambridge Philoso. Soc., 107 (1990), 287-308. doi: 10.1017/S0305004100068560 |
[3] | F. Beukers, C. B. Huijsmans and B. D. Pagter, Unital embedding and complexification of falgebras, Math. Z., 183 (1983), 131-144. doi: 10.1007/BF01187219 |
[4] | A. Bodaghi and S. Kim, Ulam's type stability of a functional equation derivaing from quadratic and additive functions, J. Math. Inequal., 9 (2015), 73-84. |
[5] | J. Brzdkek, L. Cadariu and K. Cieplinski, Fixed point theory and the Ulam stability, J. Funct. Spaces, 2014 (2014), 829419. |
[6] | L. Cadariu and V. Radu, Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure Appl. Math., 4 (2003), 4. |
[7] | V. Govindan, C. Park, S. Pinelas, et al. Solution of a 3-D cubic functional equation and its stability, AIMS Math., 5 (2020), 1693-1705. |
[8] | D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA, 27 (1941), 222-224. |
[9] | S. Jung, Hyers-Ulam-Rassias stability of Jensen's equation and its application, Proc. Am. Math. Soc., 126 (1998), 3137-3143. doi: 10.1090/S0002-9939-98-04680-2 |
[10] | S. Jung, D. Popa and M. Th. Rassias, On the stability of the linear functional equation in a single variable on complete metric spaces, J. Global Optim., 59 (2014), 13-16. |
[11] | Y. Lee, S. Jung and M. Th. Rassias, Uniqueness theorems on functional inequalities concerning cubic-quadratic-additive equation, J. Math. Inequal., 12 (2018), 43-61. |
[12] | P. Meyer-Nieberg, Banach Lattices, Springer-Verlag, Berlin, 1991. |
[13] | E. Movahednia, Fuzzy stability of quadratic functional equations in general cases, ISRN Math. Anal., 10 (2011), 553-560. |
[14] | E. Movahednia, S. M. S. Modarres Mosadegh, C. Park, et al. Stability of a lattice preserving functional equation on Riesz space: Fixed point alternative, J. Comput. Anal. Appl., 21 (2016), 83-89. |
[15] | E. Movahednia and M. Mursaleen, Stability of a generalized quadratic functional equation in intuitionistic fuzzy 2-normed space, Filomat, 30 (2016), 449-457. doi: 10.2298/FIL1602449M |
[16] | V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory, 4 (2003), 91-96. |
[17] | Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Am. Math. Soc., 72 (1978), 297-300. doi: 10.1090/S0002-9939-1978-0507327-1 |
[18] | F. Riesz, Sur la decomposition des opérations fonctionnelles linéaires, Atti Congr. Internaz. Mat. Bologna, 3 (1930), 143-148. |
[19] | H. H. Schaefer, Banach Lattices and Positive Operators, Springer-Verlag, New York, Heidelberg, 1974. |
[20] | S. M. Ulam, A Collection of Mathematical Problems, Interscience Publishers Inc., New York, 1960. |
[21] | A. Uyar, On Banach lattice algebras, Turkish J. Math., 29 (2005), 287-290. |
[22] | A. W. Wickstead, Characterisations of semi-prime archimedean f-algebras, Math. Z., 200 (1989), 353-354. |
[23] | R. Yilmaz and A. Yilmaz, On Banach lattice algebras, VFAST Trans. Math., 5 (2015), 1-9. |
[24] | A. C. Zaanen, Introduction to Operator Theory in Riesz Spaces, Springer-Verlag, Berlin, 1997. |