Research article

Fixed point results on ordered Prešić type mappings

  • Received: 26 December 2019 Accepted: 09 June 2020 Published: 12 June 2020
  • MSC : 47H10, 54H25

  • In the present study, we introduce a new concept of contractions called ordered Prešić type θ-contractivity and ordered Prešić type F-contractive on partial metric spaces. Then we give fixed point theorems for such mappings. Finally, some examples are presented to support the new results proved.

    Citation: Seher Sultan Yeşilkaya, Cafer Aydın, Adem Eroǧlu. Fixed point results on ordered Prešić type mappings[J]. AIMS Mathematics, 2020, 5(5): 5140-5156. doi: 10.3934/math.2020330

    Related Papers:

  • In the present study, we introduce a new concept of contractions called ordered Prešić type θ-contractivity and ordered Prešić type F-contractive on partial metric spaces. Then we give fixed point theorems for such mappings. Finally, some examples are presented to support the new results proved.


    加载中


    [1] S. Banach, Sur les operations dans les ensembles abstracits et leur application aux equations integrales, Fund. Math., 3 (1922), 133-181.
    [2] S. G. Matthews, Partial metric topology, Annals New York Academi Sci., 728 (1994), 183-197. doi: 10.1111/j.1749-6632.1994.tb44144.x
    [3] M. A. Alghamdi, N. Shahzad, O. Valero, On fixed point theory in partial metric spaces, Fixed Point Theory Appl., 2012, 175.
    [4] T. Abdeljawad, E. Karapınar, K. Taş, A generalized contraction principle with control functions on partial metric spaces, Comput. Math. Appl., 63, (2012), 716-719.
    [5] S. Romaguera, P. Tirado, O. Valero, Complete partial metric spaces have partially metrizablecomputational models, Int. J. Comput. Math., 89 (2012), 284-290. doi: 10.1080/00207160.2011.559229
    [6] S. Romaguera, Fixed point theorems for generalized contractions on partial metric spaces, Topol. Appl., 159 (2012), 194-199. doi: 10.1016/j.topol.2011.08.026
    [7] E. Karapınar, I. M. Erhan, Fixed point theorems for operators on partial metric spaces, Appl. Math. Lett., 24 (2011), 1894-1899. doi: 10.1016/j.aml.2011.05.013
    [8] A. C. M. Ran, M. C. B. Reurings, A fixed point theorem in partially ordered sets and some application to matrix equations, Proc. Amer. Math. Soc., 132 (2004), 1435-1443. doi: 10.1090/S0002-9939-03-07220-4
    [9] R. P. Agarwal, M. A. El-Gebeily, D. O'Regan, Generalized contractions in partially ordered metric spaces, Appl. Anal., 87 (2008), 109-116. doi: 10.1080/00036810701556151
    [10] I. Altun, H. Şimşek, Some fixed point theorems on ordered metric spaces and application, Fixed Point Theory Applications, 2010, Article ID 621469.
    [11] L. B. Ćirić, N. Cakić, M. Rajovic, et al. Monotone generalized nonlinear contractions in partially ordered metric spaces, Fixed Point Theory and Applications, 2008, Article ID 131294.
    [12] S. B. Prešić, Sur une classe d'in equations aux difference finite et. sur la convergence de certains suites, Publ de L'Inst Math., 5 (1965), 75-78.
    [13] L. B. Ćirić, S. B. Prešić, On Prešić type generalization of the Banach contractıon mapping principle, Acta Math. Univ. Comenianae., 76 (2007), 143-147.
    [14] T. Nazır, M. Abbas, Common fixed point of Prešić type contraction mappings in partial metric spaces, J. Nonlinear Anal. Optim., 5 (2013), 49-55.
    [15] M. Jleli, B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl., 2014, 38.
    [16] D. Wardowski, Fixed point of a new type of contactive mappings in complete metric spaces, Fixed Point Theory Appl., 2012, 94.
    [17] G. Durmaz, G. Mınak, I. Altun, Fixed points of ordered F-contractions. Hacettepe J. Math. Stat., 45 (2016), 15-21.
    [18] H. H. Alsulami, E. Karapınar, H. Piri, Fixed points of modified F-contractive mappings in complete metric-like spaces, J. Funct Spaces, 2015, Article ID: 270971.
    [19] G. Mınak, A. Helvacı, I. Altun, Ćirić type generalized F-contractions on complete metric spaces and fixed point results, Filomat, 28 (2014), 1143-1151. doi: 10.2298/FIL1406143M
    [20] M. Abbas, M. Berzig, T. Nazır, et al. Iterative approximation of fixed points for Prešić type FContraction operators, UPB Sci Bull Series A., 78 (2016), 1223-7027.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3732) PDF downloads(400) Cited by(2)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog