Citation: Seher Sultan Yeşilkaya, Cafer Aydın, Adem Eroǧlu. Fixed point results on ordered Prešić type mappings[J]. AIMS Mathematics, 2020, 5(5): 5140-5156. doi: 10.3934/math.2020330
[1] | S. Banach, Sur les operations dans les ensembles abstracits et leur application aux equations integrales, Fund. Math., 3 (1922), 133-181. |
[2] | S. G. Matthews, Partial metric topology, Annals New York Academi Sci., 728 (1994), 183-197. doi: 10.1111/j.1749-6632.1994.tb44144.x |
[3] | M. A. Alghamdi, N. Shahzad, O. Valero, On fixed point theory in partial metric spaces, Fixed Point Theory Appl., 2012, 175. |
[4] | T. Abdeljawad, E. Karapınar, K. Taş, A generalized contraction principle with control functions on partial metric spaces, Comput. Math. Appl., 63, (2012), 716-719. |
[5] | S. Romaguera, P. Tirado, O. Valero, Complete partial metric spaces have partially metrizablecomputational models, Int. J. Comput. Math., 89 (2012), 284-290. doi: 10.1080/00207160.2011.559229 |
[6] | S. Romaguera, Fixed point theorems for generalized contractions on partial metric spaces, Topol. Appl., 159 (2012), 194-199. doi: 10.1016/j.topol.2011.08.026 |
[7] | E. Karapınar, I. M. Erhan, Fixed point theorems for operators on partial metric spaces, Appl. Math. Lett., 24 (2011), 1894-1899. doi: 10.1016/j.aml.2011.05.013 |
[8] | A. C. M. Ran, M. C. B. Reurings, A fixed point theorem in partially ordered sets and some application to matrix equations, Proc. Amer. Math. Soc., 132 (2004), 1435-1443. doi: 10.1090/S0002-9939-03-07220-4 |
[9] | R. P. Agarwal, M. A. El-Gebeily, D. O'Regan, Generalized contractions in partially ordered metric spaces, Appl. Anal., 87 (2008), 109-116. doi: 10.1080/00036810701556151 |
[10] | I. Altun, H. Şimşek, Some fixed point theorems on ordered metric spaces and application, Fixed Point Theory Applications, 2010, Article ID 621469. |
[11] | L. B. Ćirić, N. Cakić, M. Rajovic, et al. Monotone generalized nonlinear contractions in partially ordered metric spaces, Fixed Point Theory and Applications, 2008, Article ID 131294. |
[12] | S. B. Prešić, Sur une classe d'in equations aux difference finite et. sur la convergence de certains suites, Publ de L'Inst Math., 5 (1965), 75-78. |
[13] | L. B. Ćirić, S. B. Prešić, On Prešić type generalization of the Banach contractıon mapping principle, Acta Math. Univ. Comenianae., 76 (2007), 143-147. |
[14] | T. Nazır, M. Abbas, Common fixed point of Prešić type contraction mappings in partial metric spaces, J. Nonlinear Anal. Optim., 5 (2013), 49-55. |
[15] | M. Jleli, B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl., 2014, 38. |
[16] | D. Wardowski, Fixed point of a new type of contactive mappings in complete metric spaces, Fixed Point Theory Appl., 2012, 94. |
[17] | G. Durmaz, G. Mınak, I. Altun, Fixed points of ordered F-contractions. Hacettepe J. Math. Stat., 45 (2016), 15-21. |
[18] | H. H. Alsulami, E. Karapınar, H. Piri, Fixed points of modified F-contractive mappings in complete metric-like spaces, J. Funct Spaces, 2015, Article ID: 270971. |
[19] | G. Mınak, A. Helvacı, I. Altun, Ćirić type generalized F-contractions on complete metric spaces and fixed point results, Filomat, 28 (2014), 1143-1151. doi: 10.2298/FIL1406143M |
[20] | M. Abbas, M. Berzig, T. Nazır, et al. Iterative approximation of fixed points for Prešić type FContraction operators, UPB Sci Bull Series A., 78 (2016), 1223-7027. |