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1. Introduction

Banach [1] introduced a famous fundamental fixed point theorem, also known as the Banach
contraction principle. There are various extensions and generalizations of the Banach contraction
principle in the literature. Matthews [2] introduced the partial metric spaces and presented a fixed
point theorem on partial metric space. After that, the fixed point results in partial metric spaces were
studied by many other authors [3—7]. Ran and Reurings [8] proved a fixed point theorem on an
ordered metric space. Thereafter, several authors obtained many fixed point theorems in ordered
metric spaces. For more details see [9-11].

Considering the convergence of certain sequences S. B. Presi¢ [12] generalized Banach contraction
principle as follows:

Theorem 1. Let (X,d) be a complete metric space, k a positive integer and T : X* — X a mapping
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satisfying the following contractive type condition
d(T(X1, X2y eees Xk), T(X2, X3y eees karl)) < C]ld(xl» -xz) + qzd('x29 x3) +o+ de(xk, xk+l)’ (11)

for every x1, x3, ..., Xi+1 in X, where q1, qa, ..., qx are non negative constants such that
g1 + @2 + ... + qx < 1. Then there exist a unique point x in X such that T (x, x, ..., x) = x. Moreover, if
X1, X2, ..., Xk, are arbitrary points in X and for n € N,

Xn+k = T<xn’ Xn415 w05 xn+k71)a (I’l =1,2, )

0

then the sequence {x,}* | is convergent and

lim x, = T'(lim x,,, lim x,,, ..., lim x,,).

Remark that condition (1.1) in the case k = 1 reduces to the well-known Banach contraction
mapping principle. So, Theorem 1 is a generalization of the Banach fixed point theorem.
Ciri¢ and Presi¢ [13] generalized the above result as follows:

Theorem 2. Let (X,d) be a complete metric space, k a positive integer and T : X* — X a mapping
satisfying the following contractive type condition

d(T (x1, X5 ey X)), T (X2, X35 w0y Xpy1)) < A max {d(x;, xi11)}, (1.2)

I1<i<k

where A € (0, 1) is constant and xy, x,, ..., X+1 are arbitrary elements in X. Then there exist a point x
in X such that T (x, x, ..., x) = x. Moreover, if x1, xa, ..., Xy, are arbitrary points in X and for n € N,

Xk = T (Xny Xt 15 ooy Xngh1)s (m=1,2,...)
then the sequence {x,} | is convergent and
lim x, = T'(lim x,,, lim x,,, ..., lim x,,).
If in addition we suppose that on a diagonal A = X*
d(T (u,tty.c.,ut), T (v, v, ...,v)) < d(u,v) (1.3)

holds for all u,v € X, with u # v, then x is the unique point in X with T (x, x, ..., x) = x.

Later, Nazir and Abbas [14], proved common fixed point theorems of the PreSi¢ type in partial
metric space.

Recently, Jleli and Samet [15] introduced a new type of contraction which is called the
f-contractivity and proved a fixed point theorem for mappings of this type, for which the Banach
contraction principle and some other known contractions conditions. Jleli and Samet denote the
family of all functions, 6 : (0,00) — (1, o0) satisfying the following properties by ®:

(®;) 6 is non-decreasing;

(®,) For each sequence {s,} < (0,0), lim,_,, 6(s,) = 1 if and only if lim,_,,, s, = 07;

(©3) There exists m € (0, 1) and z € (0, 0] such that lim, o+ 221 = 7
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Wardowski [16] introduced concept of F-contractive mapping on metric space and proved a fixed
point theorem for such a map on complete metric space. Let ¥ be the set of all functions F : R, — R
satisfying the following conditions:

(F1) F is strictly increasing. Thatis, 8 <y = F(B8) < F(y) forall B,y e R,
(F2) For every sequence {8, },c in R, we have lim,_,, 8, = 0 if and only if lim,_,,, F(8,) = —o0
(F3) There exists a number z € (0, 1) such that limg_,o+ S°F(8) = 0.

Durmaz et al. [17] introduced a new the concept of the ordered F-contractive on ordered metric
spaces. For more study on F-contractions one may refer to [18, 19].

2. Ordered Presic type 6-contractivity mappings

We give a fixed point theorem for ordered the PreSi¢ type #-contractivity mapping in partial metric
space. Firstly, let us start with the definition of ordered the Presi¢ type #-contractivity mapping.

Definition 1. Let (X, <, p) be an ordered partial metric space. We say that M : X" — X is an ordered
Presic¢ type 0-contractivity mapping, if 6 € © and there exists t € (0, 1) such that ¥(¥,,1,%,2) € Z*
implies that
t
G(p(M(ZF],?Fz,...,7,),M(72,73,...,7F,+1),)) < [0(ln<11a<xr{p(71, ;Fi+l)}) . (21)
where
A {(?r+l’;';r+2) eXxX: X <X 0, p(M(;Fl, Koy ?J,M(?z,?y cees ;FrJrl)) > O} 2.2)

Theorem 3. Let (X, <, p) be an ordered complete partial metric spaces, M : X" — X an ordered Presi¢
type 0-contractivity mapping where r a positive integer and M is non-decreasing mapping. There exists
the sequence (. ,) defined by

Frir = M(F s Frits oo Frirr)y (n=1,2,..) (2.3)

such that ¥,y, < M(F,ir, Xnirs s Xnir), for any arbitrary points X1, %,,... %, € X. If M is
continuous then M has one and only one fixed point.

Proof: Firstly, we show that M has a fixed point. Let ¥y, 15, ..., ¥, be arbitrary r elements in X.
Using these points define a sequence (¥,) as follows:

:Fn+r:M(?n’?nJrl’--',;FnJrrfl)s (n: 1,2,...).
If there exists ny € {1,2,...r} for which ¥,, = ¥, ., then,
;’7n0+r = M(Ynoa ;Fno-'rl’ ) ;’;no-‘rr—l) = M(;Fno-'rr, 7no-i-ra R ;Fno-i-r)

that is, 1,4, 1s a fixed point of M.
We assume that ¥, ,, # ¥, forall n € N. Since ¥,,, < M(¥,41,¥ni2, .0, Turr) and M is
non-decreasing, we obtain

;FnJrl §7n+2é;’;n+3i"'ﬁ;’;n+rﬁ~”-
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Denote x,, = p(Xnirs Xnirs1), forn = 1,2, ... and
T = max{p(;Fl’ ;FZ)’ p(;FZ’ 73)’ .o ’p(;Fr’ ;Fr-i-l)}
then we have y,,, > O foralln e Nand T > 0. Since ¥,,, < ¥, ,, and

p(M(In’ ?n+la ceey ;Fn+r—l >, M(;Fn+l, 7n—i—Z’ ceey ;Fn+r)) > O

for every n € N, then (¥, ¥,,1) € Z* and so for n < r, we have the following inequalities:

O0xri1) = 0(p(Fri1, ¥r12))
= Q p ?1,?2,...,7,),1‘4(;’72,;’;3,...,;Fr_H)))

[ (max {p am)})T

1<i<r

and so on. Hence we obtain
2 r
H(XnJrr) < [9()(n+r71)]t < [9()(n+r72)]t SRS [9(/\%)]1 .
Thus, we have

1 < 00¢nsr) < [00x0)]"

for all r € N. Letting r — o0 in (2.4), we obtain
O0nsr) — 1
which implies from (®,) that
lim y,., = 0%,
r—0
From (@;), there exist a € (0, 1) and ¢ € (0, 0] such that

Oxnsr) — 1
i (W) =1 0.
=% (Xntr)®

(2.4)

(2.5)

(2.6)

Assumed that ¢ < co. In this case, let £ = % > 0. From the definition of the limit, there exists ng € N

such that

Oxnsr) — 1
'%—g@‘éﬂ forall n+r>n

(/\/n+r a

This implies that

0(/Vn+r) —1

>p—E=E, forall n+r=>n
(/\/n+r)a
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Then

n(/\/n+r)a < Fn[e(/YnJrr) - 1]’

forall n +r = no where F = % Assume that ¢ = co. Let £ > 0 be an arbitrary positive number. From

the definition of the limit, there exists ng € N such that

9(/\/n+r> —1 >

—/E,

(Xn-i-r)a

for all n + r > ny. This implies that

n(Xn+r)a < Fn[e()(n-i-r) - 1],

forall n + r > ny, where F = +.
Thus, in all cases, there exist /' > 0 and ng € N such that

n(/\/n+r)a < Fn[e(/\/n-i-r) - 1],

for all n + r > ny. Using (2.4), we obtain

n(xusr) < Fu([60ca)]" = 1)

for all n > ny. Letting r — o0 in the above inequality, we obtain

lim 7(xnsr)* = O.

r—00
Thus, there exists ng € N such that
1
Xn+r < S
Nna

For any n,m € N with m > n > ngy, we have

p(;Fn-i-r’ ;Fm-&-r) = p(M(;Fna ceey 7n—%—r—l)’ M(;Fma ..

b

, forall n+r = ny.

. ;Fm-‘rr—l))

<P(M(;Fn’ ;Fn—H, eeey ;Fn—i-r—l)a M<;Fn+lv ;Fn+27 eeey 7n—i—r))'i_
p<M<;Fn+l’ :Fn+2, (223} ;Fn+r), M<?n+2’ :Fn+3» (223} q;n+r+l)) +...+
P(M<7m71, :Fma ceey 7m+r72>a M(;Fm’ ;Ferla cees ?errfl))_

{p(M(;Fn-i-l’ ;Fn+2’ ) ;Fn-‘rr)’ M(;Fn—i-l’ ;FYH-Q’ ..

i) ;’;n+r))+

o X ntri1)) +onot

) :Fm+r—2))

PM(F 2, X s oes Tngrit)s M(F g2, F s, o
PM(F 1y T s eoes Xinir—2)s M(F 15 X woes Tmar—2))}
<PM(Z s Xty woos Kopr—1)s M(F i1, Tngas ooos Tner) )+
PM(F 15 T nias oo Xnir)s M(F psns X nig3seoos Lonrgn)) + oo+
PM(F s F 15 eees Xmar—3)s M(F i1, Ty .
=p(Fntrs Xniri1) + P(Fnsrrts Tngra) + .00+
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| =

— 0.
i

Q=

0 0
=Xnt+r T Xntre1 T oo T Xmgr—2 < ZXi+r < Z

i=n

This shows that (¥,) is a Cauchy sequence in (X, p). Since (X, p) is complete partial metric spaces
the sequence (F,,) convergence to some point e € X. That is

lim p(F¥,i,,e) =0= lim p(¥,i,Fmir) = ple,e).

n,m— o0 n,m— 00

Now if M is continuous, then we have

e = hm ;F,,H,r == llm M(;’;n, ;Fn+1, ceey ;Fn+r71>
n—o0

n—0
= M(lim 7y, lim T,y 1, ..., lim Fppyy)
n—0 n—0 n—00
= M(e,e,...,e).

Now let us show that the fixed point of M is uniqueness. Suppose that there exists another fixed point
f of M distinct from e, such thate = M(e,e,...,e) and f = M(f, f,..., f) with Y(e, f) € Z*, then

p(M(e,e,....e),M(f,f,....,f)) > 0.

Then it follows from the assumption that

0(p(e.f)) = 0(p(M(e.e.....e), M(f.f.....[))) < [0(p(e. )] < 0(p(e. f)).

which is a contraction since ¢ € (0, 1). Thus M has a unique fixed point.

Example 1. Let X = {u,;n = 1,2,...} and p(d,h) = max{d, h}. Define an order relation < on X as
Ug < hy < [uy = u, or uy < u, with ug,u, € X|,

where < is usual order. Obviously, (X, <, p) be an ordered complete partial metric spaces. Let k € Z*
and M : X* — X be given by M(uy,uy,....uy) = uy, forall n # 1, M(uy, thy, ... tty) = ;1. Now we
claim that an ordered Pre$ic type 0-contractivity mapping with 6(u) := eV, Note that for u, = % and
Uy < Uy,. Thus

P(M (g, g, .oy ths), M (U, gy ooy ) > 0,

we have . . |
M sy Ugy ooy Ug ’M ms Ums oo Uy = ) =
P(M (1t sy s tts), M1t s tn)) max{m+1 s—l—l} s+1
and
{1 1} 1
pug, uy) = max{ —, — ¢ = —.
m s K
Therefore,
K <
s+ 1

for some t € (0,1). Therefore Theorem 3 implies that M has a unique fixed point. In this example u; is
the unique fixed point of M.
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Following is an example which illustrates that an ordered PreSi€ type 6-contractivity in partial metric
space need not to be a Presi¢ type contraction in metric space.

Example 2. Let X = {f, = #, re N} U {0} and p(d,h) =| d — h | + max{d, h}. Define an order
relation < on X as

?r < ?r+l A [;Fr = ?r+1 or :Fr < ?r+1With Ir’ ;FrJrl € X]a

here < is usual order. Clearly, (X, <, p) be an ordered complete partial metric spaces. Define the
mapping M : X*> — X by

X, + A,

M(F, #) = for all ¥, #,€X.

We claim that M is an ordered Presié type 6-contractivity with respect to 8(m) = €™ and
s = e 2 € (0,1). To see this, we shall prove that M satisfies the condition (2.1). Then we obtain

P M T o Fr) M(Fp F i)l M IIOMETre 0] s(max{p(Fr1 Fr),p(Fr T 1)} Er T2 (T )
9

for s = e~%. The above condition is equivalent to
P(M(F -1, %)), M(F 1, F )P Mt )M Trs1))
< smax{p(F,_1, F,), p(Fy, Fryy) e P FrarF00FrF i)},
So, for s = €72, we attain

P(M(F -1, %), M(Fr, Fri1))
max{p(?r—l’ ;Fr), P(;Fr, ;|7r+1)}

Then, we obtain

el’(M(7r—l,;Fr)sM(?r’;FH—l))_max{p(?r—l,;Fr)ap(?h:';r+l)} < s. (28)

PMEF 1, X0 M F 1)) (R, ) MGF 1 40) - max (01 )0 (o o)}
max{p(¥,_1,¥,), p(Fr, ¥r41)}

477 + 14r +5 =41
= e
4r2 +18r + 12

-2

Thus the inequality (2.8) is satisfied with s = e~2. Therefore Theorem 3 implies that M has a unique
fixed point, that is, M(0,0) = 0.

On the other hand, it is not PreSi¢ type contraction in metric spaces, where d(d,h) = |d — h|, for
all d, h € X. To see this, we obtain

m d(M(;Fr—la;’;r),M(;’;r,?r+l)) _ lim 4r + 1 B
o kT ) Te)] A3

Then

d(M(?rfl, ?r>’ M(?r’ :FrJrl)) < 6] max{d(?rfl’ ;Fr), d(?r’ :FrJrl)}

does not hold for q € (0, 1). Hence the condition of Theorem 2 is not satisfied.

AIMS Mathematics Volume 5, Issue 5, 5140-5156.
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Since

i PME 0, T) M(F Fr)) A7+ 14545
=0 max{p(F,_1, %), p(Fr. Frat)}  r—odr? +18r+12

the condition of Theorem 2.1 in [14] is not satisfied.
This example shows the new class of ordered PreSic¢ type 6-contractivity operators is not included
in Presic type classes of operators known in literature.

Corollary 1. Let (X, <, p) be an ordered complete partial metric space, r positive integer and
M : X" — X a given mapping. Assume that there a exist 6 € ® and t € (0, 1) such that

O(p(M(F1, %2, s ¥1), M(F2, T3, s Frit)) < [0(max {p(F:, Fis1) )],

1<i<sr
forall (¥,.1,%,12) € Z*, where
p(M(?l, ;Fz, ooy ;Fr), M(?z, ?3, ceey ;FrJrl)) > 0.

Now let we show that the contractive mapping of Corollary 1. If M is a contractive there exists
n € (0,1) such that

p(M(:Fl, ?2, veey ?r)’ M(;Fz, ?3, ceey ?r+l)) < n max {p(:[;,‘, :F,‘_H)}, V;Fr_H, :Fr+2 e X

1<i<r
then we have

emxi<i<{p(FiFir )}]f_

Therefore the function 0 : (0,0) — (1,0) defined by 6(u) := eV* belong to ®. Also we obtain

O(p(M(e.e.....e). M(f. f.....[))) < [6(p(e. /)],

forall (e, f) € Z*, where
p(M(e,e,...,e),M(f,f,....f)) > 0.

Then M has one and only one fixed point. If M is a contractive there exists 1 € (0, 1) such that
p(Mle,e,....e),M(f.f.....f)) <nple f),
then we have

PM(eers ML) < [N,

3. Ordered Presic¢ type F-contraction mappings

Recently, Abbas et al. [20] introduced a certain fixed point theorem for the Presi¢ type F-contractive
mapping. Now we give a fixed point theorem for ordered the Presi¢ type F-contractive mapping in
partial metric space. Firstly, let us start with the definition of the ordered PresSi¢ type F-contraction

mapping.

AIMS Mathematics Volume 5, Issue 5, 5140-5156.
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Definition 2. Ler (X, <, p) be an ordered partial metric space. We say that M : X" — X is an ordered
Presic¢ type F-contraction mapping if F € F and there exist T > 0 such that ¥(¥,,1,%,.,) € $*
implies that

T+ F(P(M(:Fl, ?2, veey ;’;r), M(?Z, ;';3, ceey ?,H))) < F(max {p(:[;t, ;’;lurl)}), (31)

1<t<r

where
S* = {(;Fr+1,;';r+2) eXxX: ;Fr-H < ;FH_z, p(M(;Fl,;’;z, ...,Yr),M(;Fz,;F& ...,;’;H_l)) > O} (32)

Theorem 4. Let (X, <, p) be an ordered complete partial metric spaces, M : X" — X an ordered
Presic¢ type F-contraction mapping, where r is a positive integer and M is non-decreasing mapping.
There exists the sequence (¥, ,) defined by

Fosr = M(Fs Tt o Frrr)s (n=1,2,..)) (3.3)

such that X,y, < M(F,ir, Xnirs s Xnir), for any arbitrary points %1, %5, ... %, € X. If M is
continuous or X is regular then M has a fixed point.

(A) If every pair of elements have a lower bound and upper bound, thus the fixed point of M is unique.

Moreover if (e, f) € S* implies that

T+ F(p(M(e,e,....e),M(f, f,....f))) < F(ple, f)),

then M has one and only one fixed point.

Proof: Firstly, we shows that M has a fixed point. Let 1y, 15, ..., £,, be arbitrary r elements in X.
Using these points define a sequence () as follows:

:Fn+r = M(?n,?n+l,---,?n+r—l)’ (HZ 1’2’)
If there exists ng € {1,2,...r} for which ¥,, = ¥, then
;Fn()"rr = M(;Fn()a ;Fn()-i-] ER ;Fno-‘rr—l) = M(;Fno-‘rr’ ;an-i-rv R ;Fn()-l—r)

that s, 1,4, 1s a fixed point of M.
We assume that ¥, ,, # ¥, forall n € N. Since ¥,,, < M(¥,41,¥ni2, .0, Turr) and M is
non-decreasing, we obtain

i1 = < A3 < <X < ...
Denote «,., = p(Xnir, X nairs1), forn = 1,2, ... and
P =max{p(FX1,%2),p(F2,¥3),....p(Fr, ¥111)}
then we have «,,,, > O foralln € Nand P > 0. Since *,,, < ¥,,,, and

p(M(;Fn’ :FnJrla ooy ?n+r71>’ M(;Fn+l’ ;';n+2’ ooy ;FnJrr)) >0

AIMS Mathematics Volume 5, Issue 5, 5140-5156.
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for every n € N, then (¥,,F,.1) € S$* and so for n < r, we have the following inequalities:

F(K,+1):Fp( r+1s r+2))
(

;’71’;’;27" ,;Fr)a (;FZ’ 737-'-’ ;’;r-‘rl)))
p(?t’ FTi)}) —

,..~.\/-\

F(Kr_;,_z) = F(P( r+2> r+3))

F(p(M(F2, T3 s Frit)s M(F 3, F sy s Fria)))
F(_max {p(¥,F1)}) — 27
< F(P

N

2<t<r+1

) —

and so on. Thus we obtain

F(Kn+r) F(p( n+r» n+r+l>>

F<p< (;Fn’ ;FnJrla--- ?n+r71>aM(?n+l’ ;FnJrZ’nw ;FnJrr))
(
(P

N

F( _max {p(¥i, Frs1)}) —n7

n<t<n-+r—

N

F(P) —nt

forn > 1. Letting n — o0 in (3.4) we obtain

lim F(k,.,) = —©

n—00

which implies from (F2) that

hm Kpyr = 0

n—0o0

From (F3) there exists i € (0, 1) such that
nle K F(kyyr) = 0.
By (3.4), we have
KnirF (Knir) = Ky, F(P) < —K,nt < 0.

On taking the limit as n — oo, we obtain

lim n&", = 0.
N0 n—+r

Thus from (3.9) there exists ny € N such that n«, . < 1 for all n > ny. Consequently we have

1

Kn+r < 1
nh

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)
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for all n = ny.
For any n,m € N with m > n > ny, we have

p(?n+r’ ;Fm+r) = p(M(;l;n, “ery ;Fn+r—1), M(?m’ e ;Fm+r—1)))
SP(M(F o, Tty oo Tntr—1)s M(Fnie1s T2 coos Lugr) )+
PM(F i1, X g2y oes Fnr)s M(F g2, Fnizsooos Fngrp)) + .00+
PM(F =1, T ins e Tmtr—2)s M(FX s X ini1s oo X imr—1) ) —
{P< ( ntls A ng2s eees :Fn+r)’ M(;FnJrl, K nt2s ens ;Fn+r)>+

P(M(F i, Xz eoos Tngrs1)s M(Fsas K zo oo Y1) + ..+
PM(F 1, X inseoos Tonar—2)s M(T ity X oo Lmir—2)) }
<p(M(*¥,, ;Fn+1, ceos T 1)s M(F i1y X sy oo Fnr) )+

PM(F i1, Tniaseoos Tor)s M(Fni2, Xoniss ooy Tnr1)) + oo o+
PM(F 2, Fontscos Fonir3)s M(F ity Fons o Fontr2))
=D(Fpirs Tniri1) + P(Fnirsts Tngri2) + oo + D(Fmir—2, Tonsr—1)

a0
1
=Kntr T Kntrt1 T oo T Kppr—a < ZKtJrr < Z - —0.
th
=n 1=n

This shows that (*F,) is a Cauchy sequence in (X, p). Since (X, p) is complete partial metric spaces,
the sequence (¥,,) convergence to some point ¢ € X. That is

llm p(:[;n-&-ra e) = 0 = llm p<?n+r’ :Fm+r) = p<e’ e)'

n,m— o0 n,m—00

Now if M is continuous, then we have

e = llm ;';n+r — llm M(;Fn, ;Fn_;,_l, ceey ;Fn-i-r—l)

n—oo n—o0
= M(lim ¥, hm Frats e Hm ¥y )
n—o0 n—ao0
= M(e,e,...,e).

We stated that X is regular, if the ordered partial metric spaces (X, <, p) provides the following
condition:

If {¥,} < X is a nondecreasing sequence with ¥, — e € X, then ¥, < e for all n € N. Assume
(X, <, p) is regular, then ¥, < e for all n € N. Then two cases arised here.

Case 1. If there exists n, r € N for which ¥, ,, = e then we obtain

M(e,e,....e) = M(F i1, X nias oo L nar) = Fnar1 < e

Moreover, since ¥, < ¥,. .41, thene < M(e,e,...,e) and thus, e = M(e,e, ..., €).
Case 2. Assume that ¥, # e for every n € N and

ple,M(e,e,...,e)) > 0.
Since lim,_,,, £, = e, then there exist n; € N such that

P(Fuiri1, M(ese,....e)) >0
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and
) < ple, M(ez,e, e €))

for all n > ny, where (¥,, ¢) € S*. Therefore by considering (F1), we have, for n > n;,

p(Fn.e

T+ F(p(M(ZX i1, X nsos s Lnar)s M(e,e,...ie))) < F( max {p(¥,,e)})

n+l1<t<n+r

<F (p(e, M(e,e, ...,e))) ,

2

which yields
P(Fniri1, M(ese,...,e)) <

Taking limit as n — o0, we deduce that

ple,M(e,e,...,e))

N

a contraction. Therefore we conclude that p(e, M(e, e, ...,e)) = 0, that is, e = M(e, e, ...,e). Now to
see condition (A) it is sufficient to show that for every V¥, , € X, lim, oo M(X,, Xpi1y ooy Fpr1) = €
where e is the fixed point of M such that e = lim,_,, M(¥ 41, Xpi2s ..., Tuyr). For which two cases
arise:

Let ¥,., € Xand ¥, be as in Theorem 4.
Case 1: If ¥,,, < ¥, . or ¥, 1 < X, then

M(;Fn, ?nJrl’ cees :Fn+r71) =< M<;Fn+l» :Fn+2, (XE) ;’;nJrr)

or
M(;FnJrl, ;FnJrZa [EE) ;Fn+r> =< M(?n’ ;Fn+l’ (XX} ;FnJrrfl)

forall n e N. If
M(;Fn’ :Fn-&-l, ceey ;Fn—i-r—l) = M(;Fn-i-l’ ;’;n+2a ooy 7n-‘,—r)

for some n € N, then M(¥,,, ¥,.1, ..., ¥ nir_1) — €. Now let
M( X, Xpgts o Xngre1) # M(Fni1s Fugas oo Tagr)
for all » € N, then
PM(F s Xty oo Tnr—1)s M(Fpits X nsas ooy Lugr)) >0

and so
(M(F s X nitsoeos Xngr1)s M(F i1, X2y ooy X)) € S* for all n € N. Therefore from (3.1), we obtain

F(p(M(F s Xnsts eoos Tnwr1)s M(Fni1s X nvas o Tur))) <F( max  {p(¥,,¥111)}) —nt

n<t<n+r—1

<F(P) — nr. (3.10)
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Taking into account (F2), from (3.10) we obtain

lim p(M(;Fn, 7n+l’ veey ;Fn—i-r—l)’ M(;’;n—i-la 7n+2, (X3 ;Fn—i-r)) =0

n—00

and then,

llm M(?n, ;Fn+], ceesy In—i—r—l) == llm M(;Fn_;,_], ;Fn_;,_z, ...,;'7n+r) = €.

n—o0 n—oo

Case 2: If ¥, X X1 0r £ii1 X £,p then from (A), there exist £, ,, £nir11 € X such that
Fmari1 < Xy < Xppand Xy < X001 < Y. Therefore, as in the case 1, we can show that

llm M(?m, ;Fm+1, ceny ;’;m+r7]) == llm M(?m+1, ?m+2, ceny ;Fm+r)

n—ao0 n—0o0
= llm M(?n, ;Fn+1,...,;'7n+r_1)
n—oo
= lim M(;Fn-i—l’ ;’;n+2, ceey 7,,4_,«) = e.
n—oo

Also, we can show that the fixed point of M is unique the in this method. Suppose that
e=M(e,e,...,e)and f = M(f, f,...,f) with¥(e, f) € S*. Thus

p(M(e,e,...,e),M(f,f,...,f)) > 0.

Thus by given suppose we have

t 4 F(ple. ) = T+ F(p(M(e.e, o e). M(f. . f))) < F(ple. f)):
a contraction as 7 > 0,so e = f.

Example 3. Let X = [0,4] and p(d, h) = max(d, h). Define an order relation < on X as
:Fr ﬁ :Fr_t,_l = [;Fr = :Fr+1 or ?r < :Fr+1With :Fr’ q;r—l-l € X:I’

here < is usual order. Clearly, (X, <, p) be an ordered complete partial metric spaces. Let r positive
integer and M : X" — X be the mapping defined by

- ;’;1 +;Fr
B 8r

Define F : R, — R by F(v) = v + In(v). Note that for v = In(4r) and ¥, < ¥,,,. Thus

M(F1, Fa, s 7))

for all ¥y,%,, ... 1, eX.

p(M(q;l, ;';2, cees ?r)’ M(;’;Q, 73, cees ;FrJrl)) > 0,
we have

T+F(p(M(;Fl, ;’72, cens ;Fr>, M(;Fz, 73, cesy ;Fr-i-l)))

Y1+ x, *r+ ?er
=1In(4 F
n(4r) + (max{ T & })

—In(4r) + F (% (Fa2 + 7,+1)) =In(4r) + F <8l (p(F1,%2) + p(F,, ;’;r+1))>

r
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1 1 1
<lIn(4r) + F(E (p(Frs ¥rs1)) = In(4r) + 4—FP(7r, Fre1) +1n y» (P(Fr, Fr11))
1

:4—rp(?r, Frp1) +Inp(F,, 1) < {2;13{19(% Xir1)} +1n {ggé{p(?t, i)}

=F(max{p(¥,, ¥i1)})

In addition for all e, f € X withe < f

p(Mle,e,.e), M(f, f, o f)) — max {i 41} =0
and

F(p(M(e,e . ¢), M(f, f ) —F (max {f £}) _F <4—1rp(d, h))

:Ep(d’ h) + In(p(d, h)) — In(4r)
<p(d,h) +In(p(d,h)) —t = F(p(d,h)) — 1

Thus all the required assumptions of Theorem 4 are satisfied. In addition, for any arbitrary points
X1, X2, ., X € X, the sequence (X)) defined by (3.3) converges to e = 0, the unique fixed point of M.

Following is an example which illustrates that an ordered PreSi¢ type F-contraction in partial metric
space need not to be a Presic¢ type contraction in metric space.

Example 4. Let X = {f, = 2r(;:rl)’ r € N} and p(¥, #) = max{¥, #}. Define an order relation <

on X as

?r < ?r+l A [;Fr = ?r+1 or ;Fr < ?r+1With Ir’ ;FrJrl € X],
here < is usual order. Clearly, (X, <, p) be an ordered complete partial metric spaces. Define the
mapping M : X*> — X by

M7, 4) — X, + A,

for all ¥, #, € X.

We claim that M is an ordered PreSi¢ type F-contraction mapping with respect to F(v) = v + In(v)
andt = % To see this, we shall prove that M satisfies the condition (3.1). Then we obtain

R O o e
P4+ 2r+1 o

243 2
%e—% — e max{p(F,_1, 7)), p(Fr Frir))-

Therefore Theorem 3 implies that M has a unique fixed point, that is, M(1,1) = 1.
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On the other hand, it is not PreSi¢ type contraction in metric spaces, where d(d,h) = |d — h|, for
all d, h € X. Hence the condition of Theorem 2 is not satisfied. Since
. pM(F 1, X)), M(¥ 1, ¥ 11)) . 2r+4r+2
lim =lim —— =1,

r—o max{p(¥,_1,¥,), p(Xr, Xr11)} r—202r2+6r+4

the condition of Theorem 2.1 in [14] is not satisfied.

This example shows the new class of ordered Presic type F-contraction operators is not included in
Presic type classes of operators known in literature.

The following results are an relation consequence of Theorem 4 by taking F(v) = Inv.

Corollary 2. Let (X, <, p) be an ordered complete partial metric space, r positive integer and
M : X" — X a given mapping. Assume that there exists T > 0 such that

P(M(?l, Foyeens ?r>’ M(?z, P Tn 7r+1)) < e " max {P(?i, ?i+1)}, (3.11)

1<i<r

forall (F\, %y, ... %, 1) € X" with ¥, < ¥, . Then for any arbitrary points ¥, %, ..., ¥, € X, the
sequence (X,) defined by (3.3) converges to e, and e is a fixed point of M. That is, e = M(e,e,...,e).
Moreover if

p(M(e.e....e), M(f.f....f)) < e ple.f)
holds for all e, f € X with e < f, then e is the unique fixed point of M.
Corollary 3. Let (X, <, p) be an ordered complete partial metric space, r positive integer and

M : X" — Xa given mapping. Assume that there exists 91,0, ...,0; non-negative constants with
01+ 02+ -+ 06, <1suchthat

p(M(;Fl’ ;F27 ceey ;Fr)’ M(;F27 73, AR ;Fr-i-l)) < 61p(;';1’ 72) + 62[)(;'72, ;'73) + ct + 6rp(;l7k’ ;Fr"l‘])
(3.12)

forall (F\,%y,... %, 1) € X" with ¥, < ¥,.|. Then for any arbitrary points ¥|,%,,..., ¥, € X, the
sequence (1) defined by (3.3) converges to e, where e is the unique fixed point of M.

Proof: Clearly condition (3.12) implies condition (3.11) with 6 = 6; + 9, + --- + 6,. Now, let
e, f e X withe < f. From (3.12), we have

p(M(e,e,...e),M(f,f,...f)) < p(M(e,e,..,e),M(e,e,..,e f))+
p(M(e,e,....e,f),M(e,e,...e, [, f)) + ..+
PM(er fy o ) MU fo o )
{p(M(e,e,....e, f),M(e,e,...e f))+
p(M(e,e,....e, [, f),M(e,e,....e, [, f)) + ..+
PM(e, fyor £ MU fr o )}

<p(M(e,e,....e),M(e,e,....,e, )+

p(M(e,e,....e, f),M(e,e,...e,f, ) + ..+
(Me, foes ) M(f, s f))
<(61 + 02+ +8,)ple, f) = ople, f),

(
where § = 8, + 6, + -+ + 6, € (0, 1). Therefore all the assumption of corollary 2 are satisfied.
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4. Conclusions

In the present article, we prove the fixed point theorems for ordered PresSi¢ type 6-contractivity

and ordered Presi¢ type F-contraction mappings. Also, we provide examples showing that our main
theorems are applicable.
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