

http://www.aimspress.com/journal/Math

AIMS Mathematics, 5(5): 5140–5156.

DOI: 10.3934/math.2020330 Received: 26 December 2019 Accepted: 09 June 2020

Published: 12 June 2020

Research article

Fixed point results on ordered Prešić type mappings

Seher Sultan Yeşilkaya^{1,*}, Cafer Aydın² and Adem Eroğlu³

- ¹ Institute of Science and Technology, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, 46040, Turkey
- Department of Mathematics, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, 46040, Turkey
- Department of Mathematics and Science Education, Tokat Gaziosmanpaşa University, Tokat, 60150, Turkey
- * Correspondence: Email: sultanseher20@gmail.com.

Abstract: In the present study, we introduce a new concept of contractions called ordered Prešić type θ -contractivity and ordered Prešić type F-contractive on partial metric spaces. Then we give fixed point theorems for such mappings. Finally, some examples are presented to support the new results proved.

Keywords: fixed point; partial metric spaces; ordered Prešić type θ -contractivity; ordered Prešić type F-contraction; regular mapping

Mathematics Subject Classification: 47H10, 54H25

1. Introduction

Banach [1] introduced a famous fundamental fixed point theorem, also known as the Banach contraction principle. There are various extensions and generalizations of the Banach contraction principle in the literature. Matthews [2] introduced the partial metric spaces and presented a fixed point theorem on partial metric space. After that, the fixed point results in partial metric spaces were studied by many other authors [3–7]. Ran and Reurings [8] proved a fixed point theorem on an ordered metric space. Thereafter, several authors obtained many fixed point theorems in ordered metric spaces. For more details see [9–11].

Considering the convergence of certain sequences S. B. Prešić [12] generalized Banach contraction principle as follows:

Theorem 1. Let (X,d) be a complete metric space, k a positive integer and $T: X^k \to X$ a mapping

satisfying the following contractive type condition

$$d(T(x_1, x_2, ..., x_k), T(x_2, x_3, ..., x_{k+1})) \leq q_1 d(x_1, x_2) + q_2 d(x_2, x_3) + ... + q_k d(x_k, x_{k+1}),$$
(1.1)

for every $x_1, x_2, ..., x_{k+1}$ in X, where $q_1, q_2, ..., q_k$ are non negative constants such that $q_1 + q_2 + ... + q_k < 1$. Then there exist a unique point x in X such that T(x, x, ..., x) = x. Moreover, if $x_1, x_2, ..., x_k$, are arbitrary points in X and for $n \in N$,

$$x_{n+k} = T(x_n, x_{n+1}, ..., x_{n+k-1}), (n = 1, 2, ...)$$

then the sequence $\{x_n\}_{n=1}^{\infty}$ is convergent and

$$\lim x_n = T(\lim x_n, \lim x_n, ..., \lim x_n).$$

Remark that condition (1.1) in the case k=1 reduces to the well-known Banach contraction mapping principle. So, Theorem 1 is a generalization of the Banach fixed point theorem.

Ćirić and Prešić [13] generalized the above result as follows:

Theorem 2. Let (X, d) be a complete metric space, k a positive integer and $T: X^k \to X$ a mapping satisfying the following contractive type condition

$$d(T(x_1, x_2, ..., x_k), T(x_2, x_3, ..., x_{k+1})) \le \lambda \max_{1 \le i \le k} \{d(x_i, x_{i+1})\},$$
(1.2)

where $\lambda \in (0,1)$ is constant and $x_1, x_2, ..., x_{k+1}$ are arbitrary elements in X. Then there exist a point x in X such that T(x, x, ..., x) = x. Moreover, if $x_1, x_2, ..., x_k$, are arbitrary points in X and for $n \in N$,

$$x_{n+k} = T(x_n, x_{n+1}, ..., x_{n+k-1}), (n = 1, 2, ...)$$

then the sequence $\{x_n\}_{n=1}^{\infty}$ is convergent and

$$\lim x_n = T(\lim x_n, \lim x_n, ..., \lim x_n).$$

If in addition we suppose that on a diagonal $\triangle \subset X^k$

$$d(T(u, u, ..., u), T(v, v, ..., v)) < d(u, v)$$
(1.3)

holds for all $u, v \in X$, with $u \neq v$, then x is the unique point in X with T(x, x, ..., x) = x.

Later, Nazır and Abbas [14], proved common fixed point theorems of the Prešić type in partial metric space.

Recently, Jleli and Samet [15] introduced a new type of contraction which is called the θ -contractivity and proved a fixed point theorem for mappings of this type, for which the Banach contraction principle and some other known contractions conditions. Jleli and Samet denote the family of all functions, $\theta:(0,\infty)\to(1,\infty)$ satisfying the following properties by Θ :

- (Θ_1) θ is non-decreasing;
- (Θ_2) For each sequence $\{s_n\} \subset (0,\infty)$, $\lim_{n\to\infty} \theta(s_n) = 1$ if and only if $\lim_{n\to\infty} s_n = 0^+$;
- (Θ_3) There exists $m \in (0,1)$ and $z \in (0,\infty]$ such that $\lim_{s \to 0^+} \frac{\theta(s)-1}{s^m} = z$.

Wardowski [16] introduced concept of F-contractive mapping on metric space and proved a fixed point theorem for such a map on complete metric space. Let \mathcal{F} be the set of all functions $F : \mathbb{R}_+ \to \mathbb{R}$ satisfying the following conditions:

- (F1) F is strictly increasing. That is, $\beta < \gamma \Rightarrow F(\beta) < F(\gamma)$ for all $\beta, \gamma \in \mathbb{R}_+$
- (F2) For every sequence $\{\beta_n\}_{n\in\mathbb{N}}$ in \mathbb{R}_+ we have $\lim_{n\to\infty}\beta_n=0$ if and only if $\lim_{n\to\infty}F(\beta_n)=-\infty$
- (F3) There exists a number $z \in (0, 1)$ such that $\lim_{\beta \to 0^+} \beta^z F(\beta) = 0$.

Durmaz et al. [17] introduced a new the concept of the ordered *F*-contractive on ordered metric spaces. For more study on *F*-contractions one may refer to [18, 19].

2. Ordered Prešić type θ -contractivity mappings

We give a fixed point theorem for ordered the Prešić type θ -contractivity mapping in partial metric space. Firstly, let us start with the definition of ordered the Prešić type θ -contractivity mapping.

Definition 1. Let (X, \leq, p) be an ordered partial metric space. We say that $M: X^r \to X$ is an ordered Prešić type θ -contractivity mapping, if $\theta \in \Theta$ and there exists $t \in (0,1)$ such that $\forall (\mathcal{F}_{r+1}, \mathcal{F}_{r+2}) \in Z^*$ implies that

$$\theta(p(M(\mathcal{F}_1, \mathcal{F}_2, ..., \mathcal{F}_r), M(\mathcal{F}_2, \mathcal{F}_3, ..., \mathcal{F}_{r+1}),)) \leq \left[\theta(\max_{1 \leq i \leq r} \{p(\mathcal{F}_i, \mathcal{F}_{i+1})\})\right]^t, \tag{2.1}$$

where

$$Z^* = \{ (\mathcal{T}_{r+1}, \mathcal{T}_{r+2}) \in X \times X : \mathcal{T}_{r+1} \leq \mathcal{T}_{r+2}, \ p(M(\mathcal{T}_1, \mathcal{T}_2, ..., \mathcal{T}_r), M(\mathcal{T}_2, \mathcal{T}_3, ..., \mathcal{T}_{r+1})) > 0 \}.$$
 (2.2)

Theorem 3. Let (X, \leq, p) be an ordered complete partial metric spaces, $M: X^r \to X$ an ordered Prešić type θ -contractivity mapping where r a positive integer and M is non-decreasing mapping. There exists the sequence (\mathbb{X}_{n+r}) defined by

$$\overline{X}_{n+r} = M(\overline{X}_n, \overline{X}_{n+1}, ..., \overline{X}_{n+r-1}), \quad (n = 1, 2, ...)$$
(2.3)

such that $\mathcal{F}_{n+r} \leq M(\mathcal{F}_{n+r}, \mathcal{F}_{n+r}, ..., \mathcal{F}_{n+r})$, for any arbitrary points $\mathcal{F}_1, \mathcal{F}_2, ..., \mathcal{F}_r \in X$. If M is continuous then M has one and only one fixed point.

Proof: Firstly, we show that M has a fixed point. Let $\mathcal{F}_1, \mathcal{F}_2, ..., \mathcal{F}_r$ be arbitrary r elements in X. Using these points define a sequence (\mathcal{F}_n) as follows:

$$\mathcal{F}_{n+r} = M(\mathcal{F}_n, \mathcal{F}_{n+1}, \dots, \mathcal{F}_{n+r-1}), \qquad (n = 1, 2, \dots).$$

If there exists $n_0 \in \{1, 2, \dots r\}$ for which $\mathcal{T}_{n_0} = \mathcal{T}_{n_0+1}$ then,

$$\mathcal{F}_{n_0+r} = M(\mathcal{F}_{n_0}, \mathcal{F}_{n_0+1}, \dots, \mathcal{F}_{n_0+r-1}) = M(\mathcal{F}_{n_0+r}, \mathcal{F}_{n_0+r}, \dots, \mathcal{F}_{n_0+r})$$

that is, \mathbb{Z}_{n_0+r} is a fixed point of M.

We assume that $\mathbb{Z}_{n+r} \neq \mathbb{Z}_{n+r+1}$ for all $n \in \mathbb{N}$. Since $\mathbb{Z}_{n+r} \leq M(\mathbb{Z}_{n+1}, \mathbb{Z}_{n+2}, ..., \mathbb{Z}_{n+r})$ and M is non-decreasing, we obtain

$$\mathcal{F}_{n+1} \leq \mathcal{F}_{n+2} \leq \mathcal{F}_{n+3} \leq \cdots \leq \mathcal{F}_{n+r} \leq \ldots$$

Denote $\chi_{n+r} = p(\mathcal{F}_{n+r}, \mathcal{F}_{n+r+1})$, for n = 1, 2, ... and

$$T = \max\{p(\mathcal{F}_1, \mathcal{F}_2), p(\mathcal{F}_2, \mathcal{F}_3), \dots, p(\mathcal{F}_r, \mathcal{F}_{r+1})\}\$$

then we have $\chi_{n+r} > 0$ for all $n \in \mathbb{N}$ and T > 0. Since $\mathbb{Z}_{n+r} \leq \mathbb{Z}_{n+r+1}$ and

$$p(M(\mathcal{X}_n, \mathcal{X}_{n+1}, ..., \mathcal{X}_{n+r-1}), M(\mathcal{X}_{n+1}, \mathcal{X}_{n+2}, ..., \mathcal{X}_{n+r})) > 0$$

for every $n \in \mathbb{N}$, then $(\mathcal{F}_n, \mathcal{F}_{n+1}) \in \mathbb{Z}^*$ and so for $n \leq r$, we have the following inequalities:

$$\begin{split} \theta(\chi_{r+1}) &= \theta(p(\mathcal{F}_{r+1}, \mathcal{F}_{r+2})) \\ &= \theta(p(M(\mathcal{F}_1, \mathcal{F}_2, ..., \mathcal{F}_r), M(\mathcal{F}_2, \mathcal{F}_3, ..., \mathcal{F}_{r+1}))) \\ &\leq \left[\theta(\max_{1 \leq i \leq r} \{p(\mathcal{F}_i, \mathcal{F}_{i+1})\}) \right]^t \\ &= [\theta(T)]^t \,. \end{split}$$

and so on. Hence we obtain

$$\theta(\chi_{n+r}) \leqslant [\theta(\chi_{n+r-1})]^t \leqslant [\theta(\chi_{n+r-2})]^{t^2} \leqslant \ldots \leqslant [\theta(\chi_n)]^{t^r}.$$

Thus, we have

$$1 < \theta(\chi_{n+r}) \leqslant [\theta(\chi_n)]^{t^r}, \tag{2.4}$$

for all $r \in \mathbb{N}$. Letting $r \to \infty$ in (2.4), we obtain

$$\theta(\chi_{n+r}) \to 1$$

which implies from (Θ_2) that

$$\lim_{r \to \infty} \chi_{n+r} = 0^+. \tag{2.5}$$

From (Θ_3) , there exist $a \in (0,1)$ and $\wp \in (0,\infty]$ such that

$$\lim_{r \to \infty} \frac{\theta(\chi_{n+r}) - 1}{(\chi_{n+r})^a} = \wp. \tag{2.6}$$

Assumed that $\wp < \infty$. In this case, let $E = \frac{\wp}{2} > 0$. From the definition of the limit, there exists $n_0 \in \mathbb{N}$ such that

$$\left| \frac{\theta(\chi_{n+r}) - 1}{(\chi_{n+r})^a} - \wp \right| \leqslant E$$
, for all $n + r \geqslant n_0$.

This implies that

$$\frac{\theta(\chi_{n+r})-1}{(\chi_{n+r})^a}\geqslant \wp-E=E, \text{ for all } n+r\geqslant n_0.$$

Then

$$n(\chi_{n+r})^a \leq Fn[\theta(\chi_{n+r}) - 1],$$

for all $n + r \ge n_0$ where $F = \frac{1}{E}$. Assume that $\wp = \infty$. Let E > 0 be an arbitrary positive number. From the definition of the limit, there exists $n_0 \in \mathbb{N}$ such that

$$\frac{\theta(\chi_{n+r})-1}{(\chi_{n+r})^a}\geqslant E,$$

for all $n + r \ge n_0$. This implies that

$$n(\chi_{n+r})^a \leq Fn[\theta(\chi_{n+r}) - 1],$$

for all $n + r \ge n_0$, where $F = \frac{1}{F}$.

Thus, in all cases, there exist F > 0 and $n_0 \in \mathbb{N}$ such that

$$n(\chi_{n+r})^a \leq Fn[\theta(\chi_{n+r}) - 1],$$

for all $n + r \ge n_0$. Using (2.4), we obtain

$$n(\chi_{n+r})^a \leq Fn([\theta(\chi_n)]^{t^r}-1),$$

for all $n \ge n_0$. Letting $r \to \infty$ in the above inequality, we obtain

$$\lim_{r\to\infty}n(\chi_{n+r})^a=0.$$

Thus, there exists $n_0 \in \mathbb{N}$ such that

$$\chi_{n+r} \leqslant \frac{1}{n_n^{\frac{1}{\alpha}}}, \text{ for all } n+r \geqslant n_0.$$
(2.7)

For any $n, m \in \mathbb{N}$ with $m > n \ge n_0$, we have

$$p(\mathcal{F}_{n+r}, \mathcal{F}_{m+r}) = p(M(\mathcal{F}_{n}, ..., \mathcal{F}_{n+r-1}), M(\mathcal{F}_{m}, ..., \mathcal{F}_{m+r-1}))$$

$$\leq p(M(\mathcal{F}_{n}, \mathcal{F}_{n+1}, ..., \mathcal{F}_{n+r-1}), M(\mathcal{F}_{n+1}, \mathcal{F}_{n+2}, ..., \mathcal{F}_{n+r})) +$$

$$p(M(\mathcal{F}_{n+1}, \mathcal{F}_{n+2}, ..., \mathcal{F}_{n+r}), M(\mathcal{F}_{n+2}, \mathcal{F}_{n+3}, ..., \mathcal{F}_{n+r+1})) + ... +$$

$$p(M(\mathcal{F}_{m-1}, \mathcal{F}_{m}, ..., \mathcal{F}_{m+r-2}), M(\mathcal{F}_{m}, \mathcal{F}_{m+1}, ..., \mathcal{F}_{m+r-1})) -$$

$$\{p(M(\mathcal{F}_{n+1}, \mathcal{F}_{n+2}, ..., \mathcal{F}_{n+r}), M(\mathcal{F}_{n+1}, \mathcal{F}_{n+2}, ..., \mathcal{F}_{n+r})) +$$

$$p(M(\mathcal{F}_{n+2}, \mathcal{F}_{n+3}, ..., \mathcal{F}_{n+r+1}), M(\mathcal{F}_{n+2}, \mathcal{F}_{n+3}, ..., \mathcal{F}_{n+r+1})) + ... +$$

$$p(M(\mathcal{F}_{m-1}, \mathcal{F}_{m}, ..., \mathcal{F}_{m+r-2}), M(\mathcal{F}_{m-1}, \mathcal{F}_{m}, ..., \mathcal{F}_{m+r-2}))\}$$

$$\leq p(M(\mathcal{F}_{n}, \mathcal{F}_{n+1}, ..., \mathcal{F}_{n+r-1}), M(\mathcal{F}_{n+1}, \mathcal{F}_{n+2}, ..., \mathcal{F}_{n+r+1})) +$$

$$p(M(\mathcal{F}_{m-2}, \mathcal{F}_{m-1}, ..., \mathcal{F}_{m+r-3}), M(\mathcal{F}_{m-1}, \mathcal{F}_{m}, ..., \mathcal{F}_{m+r-2}))$$

$$= p(\mathcal{F}_{n+r}, \mathcal{F}_{n+r+1}) + p(\mathcal{F}_{n+r+1}, \mathcal{F}_{n+r+2}) + ... + p(\mathcal{F}_{m+r-2}, \mathcal{F}_{m+r-1})$$

$$=\chi_{n+r} + \chi_{n+r+1} + \ldots + \chi_{m+r-2} < \sum_{i=n}^{\infty} \chi_{i+r} \leq \sum_{i=n}^{\infty} \frac{1}{i^{\frac{1}{a}}} \to 0.$$

This shows that (\mathcal{F}_n) is a Cauchy sequence in (X, p). Since (X, p) is complete partial metric spaces the sequence (\mathcal{F}_n) convergence to some point $e \in X$. That is

$$\lim_{n,m\to\infty} p(\mathcal{F}_{n+r},e) = 0 = \lim_{n,m\to\infty} p(\mathcal{F}_{n+r},\mathcal{F}_{m+r}) = p(e,e).$$

Now if M is continuous, then we have

$$e = \lim_{n \to \infty} \mathcal{F}_{n+r} = \lim_{n \to \infty} M(\mathcal{F}_n, \mathcal{F}_{n+1}, ..., \mathcal{F}_{n+r-1})$$
$$= M(\lim_{n \to \infty} \mathcal{F}_n, \lim_{n \to \infty} \mathcal{F}_{n+1}, ..., \lim_{n \to \infty} \mathcal{F}_{n+r-1})$$
$$= M(e, e, ..., e).$$

Now let us show that the fixed point of M is uniqueness. Suppose that there exists another fixed point f of M distinct from e, such that e = M(e, e, ..., e) and f = M(f, f, ..., f) with $\forall (e, f) \in Z^*$, then

$$p(M(e, e, \dots, e), M(f, f, \dots, f)) > 0.$$

Then it follows from the assumption that

$$\theta(p(e,f)) = \theta(p(M(e,e,\ldots,e),M(f,f,\ldots,f))) \leq [\theta(p(e,f))]^t < \theta(p(e,f)).$$

which is a contraction since $t \in (0, 1)$. Thus M has a unique fixed point.

Example 1. Let $X = \{u_n; n = 1, 2, ...\}$ and $p(d, h) = \max\{d, h\}$. Define an order relation \leq on X as

$$u_s \leq u_m \Leftrightarrow [u_s = u_m \text{ or } u_s \leqslant u_m \text{ with } u_s, u_m \in X],$$

where \leq is usual order. Obviously, (X, \leq, p) be an ordered complete partial metric spaces. Let $k \in \mathbb{Z}^+$ and $M: X^k \to X$ be given by $M(u_1, u_1, ..., u_1) = u_1$, for all $n \neq 1$, $M(u_n, u_n, ..., u_n) = u_{n+1}$. Now we claim that an ordered Prešić type θ -contractivity mapping with $\theta(u) := e^{\sqrt{u}}$. Note that for $u_n = \frac{1}{n}$ and $u_s \leq u_m$. Thus

$$p(M(u_s, u_s, ..., u_s), M(u_m, u_m, ..., u_m)) > 0,$$

we have

$$p(M(u_s, u_s, ..., u_s), M(u_m, u_m, ..., u_m)) = \max\left\{\frac{1}{m+1}, \frac{1}{s+1}\right\} = \frac{1}{s+1}$$

and

$$p(u_s, u_m) = \max\left\{\frac{1}{m}, \frac{1}{s}\right\} = \frac{1}{s}.$$

Therefore,

$$\frac{s}{s+1} \leqslant t$$

for some $t \in (0, 1)$. Therefore Theorem 3 implies that M has a unique fixed point. In this example u_1 is the unique fixed point of M.

Following is an example which illustrates that an ordered Prešić type θ -contractivity in partial metric space need not to be a Prešić type contraction in metric space.

Example 2. Let $X = \{ \mathbb{Z}_r = \frac{2r^2 + r}{2}, r \in \mathbb{N} \} \cup \{0\}$ and $p(d, h) = |d - h| + \max\{d, h\}$. Define an order relation $\leq on X$ as

$$\mathcal{F}_r \leq \mathcal{F}_{r+1} \Leftrightarrow [\mathcal{F}_r = \mathcal{F}_{r+1} \ or \ \mathcal{F}_r \leqslant \mathcal{F}_{r+1} \text{with} \ \mathcal{F}_r, \mathcal{F}_{r+1} \in X],$$

here \leq is usual order. Clearly, (X, \leq, p) be an ordered complete partial metric spaces. Define the mapping $M: X^2 \to X$ by

$$M(\mathcal{X}, \mathcal{A}) = \frac{\mathcal{X}_r + \mathcal{A}_r}{2}$$
 for all $\mathcal{X}_r, \mathcal{A}_r \in X$.

We claim that M is an ordered Prešić type θ -contractivity with respect to $\theta(m) = e^{me^m}$ and $s = e^{-2} \in (0, 1)$. To see this, we shall prove that M satisfies the condition (2.1). Then we obtain

$$e^{p(M(\mathcal{Z}_{r-1},\mathcal{Z}_r),M(\mathcal{Z}_r,\mathcal{Z}_{r+1}))e^{p(M(\mathcal{Z}_{r-1},\mathcal{Z}_r),M(\mathcal{Z}_r,\mathcal{Z}_{r+1}))}} \leq e^{s(\max\{p(\mathcal{Z}_{r-1},\mathcal{Z}_r),p(\mathcal{Z}_r,\mathcal{Z}_{r+1})\}e^{\max\{p(\mathcal{Z}_{r-1},\mathcal{Z}_r),p(\mathcal{Z}_r,\mathcal{Z}_{r+1})\}})}.$$

for $s = e^{-2}$. The above condition is equivalent to

$$p(M(\mathcal{F}_{r-1}, \mathcal{F}_r), M(\mathcal{F}_r, \mathcal{F}_{r+1}))e^{p(M(\mathcal{F}_{r-1}, \mathcal{F}_r), M(\mathcal{F}_r, \mathcal{F}_{r+1}))}$$

$$\leq s \max\{p(\mathcal{F}_{r-1}, \mathcal{F}_r), p(\mathcal{F}_r, \mathcal{F}_{r+1})\}e^{\max\{p(\mathcal{F}_{r-1}, \mathcal{F}_r), p(\mathcal{F}_r, \mathcal{F}_{r+1})\}}.$$

So, for $s = e^{-2}$, we attain

$$\frac{p(M(\mathcal{F}_{r-1}, \mathcal{F}_r), M(\mathcal{F}_r, \mathcal{F}_{r+1}))}{\max\{p(\mathcal{F}_{r-1}, \mathcal{F}_r), p(\mathcal{F}_r, \mathcal{F}_{r+1})\}} e^{p(M(\mathcal{F}_{r-1}, \mathcal{F}_r), M(\mathcal{F}_r, \mathcal{F}_{r+1})) - \max\{p(\mathcal{F}_{r-1}, \mathcal{F}_r), p(\mathcal{F}_r, \mathcal{F}_{r+1})\}} \leq s.$$
 (2.8)

Then, we obtain

$$\begin{split} \frac{p(M(\mathcal{F}_{r-1}, \mathcal{F}_r), M(\mathcal{F}_r, \mathcal{F}_{r+1}))}{\max\{p(\mathcal{F}_{r-1}, \mathcal{F}_r), p(\mathcal{F}_r, \mathcal{F}_{r+1})\}} e^{p(M(\mathcal{F}_{r-1}, \mathcal{F}_r), M(\mathcal{F}_r, \mathcal{F}_{r+1})) - \max\{p(\mathcal{F}_{r-1}, \mathcal{F}_r), p(\mathcal{F}_r, \mathcal{F}_{r+1})\}} \\ &= \frac{4r^2 + 14r + 5}{4r^2 + 18r + 12} e^{\frac{-4r - 7}{4}} \leqslant e^{-2}. \end{split}$$

Thus the inequality (2.8) is satisfied with $s = e^{-2}$. Therefore Theorem 3 implies that M has a unique fixed point, that is, M(0,0) = 0.

On the other hand, it is not Prešić type contraction in metric spaces, where d(d,h) = |d-h|, for all $d, h \in X$. To see this, we obtain

$$\lim_{r\to\infty}\frac{d(M(\mathcal{F}_{r-1},\mathcal{F}_r),M(\mathcal{F}_r,\mathcal{F}_{r+1}))}{\max\{d(\mathcal{F}_{r-1},\mathcal{F}_r),d(\mathcal{F}_r,\mathcal{F}_{r+1})\}}=\lim_{r\to\infty}\frac{4r+1}{4r+3}=1.$$

Then

$$d(M(\mathcal{F}_{r-1}, \mathcal{F}_r), M(\mathcal{F}_r, \mathcal{F}_{r+1})) \leq q \max\{d(\mathcal{F}_{r-1}, \mathcal{F}_r), d(\mathcal{F}_r, \mathcal{F}_{r+1})\}$$

does not hold for $q \in (0,1)$. Hence the condition of Theorem 2 is not satisfied.

Since

$$\lim_{r \to \infty} \frac{p(M(\mathcal{F}_{r-1}, \mathcal{F}_r), M(\mathcal{F}_r, \mathcal{F}_{r+1}))}{\max\{p(\mathcal{F}_{r-1}, \mathcal{F}_r), p(\mathcal{F}_r, \mathcal{F}_{r+1})\}} = \lim_{r \to \infty} \frac{4r^2 + 14r + 5}{4r^2 + 18r + 12} = 1,$$

the condition of Theorem 2.1 in [14] is not satisfied.

This example shows the new class of ordered Prešić type θ -contractivity operators is not included in Prešić type classes of operators known in literature.

Corollary 1. Let (X, \leq, p) be an ordered complete partial metric space, r positive integer and $M: X^r \to X$ a given mapping. Assume that there a exist $\theta \in \Theta$ and $t \in (0, 1)$ such that

$$\theta(p(M(\mathcal{F}_1, \mathcal{F}_2, ..., \mathcal{F}_r), M(\mathcal{F}_2, \mathcal{F}_3, ..., \mathcal{F}_{r+1})) \leq [\theta(\max_{1 \leq i \leq r} \{p(\mathcal{F}_i, \mathcal{F}_{i+1})\})]^t,$$

for all $(\mathbb{X}_{r+1}, \mathbb{X}_{r+2}) \in \mathbb{Z}^*$, where

$$p(M(\mathcal{F}_1, \mathcal{F}_2, ..., \mathcal{F}_r), M(\mathcal{F}_2, \mathcal{F}_3, ..., \mathcal{F}_{r+1})) > 0.$$

Now let we show that the contractive mapping of Corollary 1. If M is a contractive there exists $\eta \in (0,1)$ such that

$$p(M(\mathcal{F}_1, \mathcal{F}_2, ..., \mathcal{F}_r), M(\mathcal{F}_2, \mathcal{F}_3, ..., \mathcal{F}_{r+1})) \leq \eta \max_{1 \leq i \leq r} \{p(\mathcal{F}_i, \mathcal{F}_{i+1})\}, \quad \forall \mathcal{F}_{r+1}, \mathcal{F}_{r+2} \in X$$

then we have

$$e^{p(M(\mathcal{T}_1,\mathcal{T}_2,\dots,\mathcal{T}_r),M(\mathcal{T}_2,\mathcal{T}_3,\dots,\mathcal{T}_{r+1}))} \leq [e^{\max_{1\leq i\leq r}\{p(\mathcal{T}_i,\mathcal{T}_{i+1})\}}]^t.$$

Therefore the function $\theta:(0,\infty)\to(1,\infty)$ defined by $\theta(u):=e^{\sqrt{u}}$ belong to Θ . Also we obtain

$$\theta(p(M(e,e,\ldots,e),M(f,f,\ldots,f))) \leq [\theta(p(e,f))]^t,$$

for all $(e, f) \in \mathbb{Z}^*$, where

$$p(M(e, e, ..., e), M(f, f, ..., f)) > 0.$$

Then M has one and only one fixed point. If M is a contractive there exists $\eta \in (0,1)$ such that

$$p(M(e, e, \ldots, e), M(f, f, \ldots, f)) \leq \eta p(e, f),$$

then we have

$$e^{p(M(e,e,\dots,e),M(f,f,\dots,f))} \leqslant [e^{p(e,f)}]^t.$$

3. Ordered Prešić type F-contraction mappings

Recently, Abbas et al. [20] introduced a certain fixed point theorem for the Prešić type F-contractive mapping. Now we give a fixed point theorem for ordered the Prešić type F-contractive mapping in partial metric space. Firstly, let us start with the definition of the ordered Prešić type F-contraction mapping.

Definition 2. Let (X, \leq, p) be an ordered partial metric space. We say that $M: X^r \to X$ is an ordered Prešić type F-contraction mapping if $F \in \mathcal{F}$ and there exist $\tau > 0$ such that $\forall (\mathcal{F}_{r+1}, \mathcal{F}_{r+2}) \in S^*$ implies that

$$\tau + F(p(M(\mathcal{X}_1, \mathcal{X}_2, ..., \mathcal{X}_r), M(\mathcal{X}_2, \mathcal{X}_3, ..., \mathcal{X}_{r+1}))) \leqslant F(\max_{1 \leqslant t \leqslant r} \{p(\mathcal{X}_t, \mathcal{X}_{t+1})\}), \tag{3.1}$$

where

$$S^* = \{ (\mathcal{F}_{r+1}, \mathcal{F}_{r+2}) \in X \times X : \mathcal{F}_{r+1} \leq \mathcal{F}_{r+2}, \ p(M(\mathcal{F}_1, \mathcal{F}_2, ..., \mathcal{F}_r), M(\mathcal{F}_2, \mathcal{F}_3, ..., \mathcal{F}_{r+1})) > 0 \}.$$
 (3.2)

Theorem 4. Let (X, \leq, p) be an ordered complete partial metric spaces, $M: X^r \to X$ an ordered Prešić type F-contraction mapping, where r is a positive integer and M is non-decreasing mapping. There exists the sequence (\mathcal{F}_{n+r}) defined by

$$\mathcal{F}_{n+r} = M(\mathcal{F}_n, \mathcal{F}_{n+1}, ..., \mathcal{F}_{n+r-1}), \quad (n = 1, 2, ...)$$
 (3.3)

such that $\mathcal{F}_{n+r} \leq M(\mathcal{F}_{n+r}, \mathcal{F}_{n+r}, ..., \mathcal{F}_{n+r})$, for any arbitrary points $\mathcal{F}_1, \mathcal{F}_2, ..., \mathcal{F}_r \in X$. If M is continuous or X is regular then M has a fixed point.

(A) If every pair of elements have a lower bound and upper bound, thus the fixed point of M is unique.

Moreover if $\forall (e, f) \in S^*$ *implies that*

$$\tau + F(p(M(e, e, ..., e), M(f, f, ..., f))) \leq F(p(e, f)),$$

then M has one and only one fixed point.

Proof: Firstly, we shows that M has a fixed point. Let $\mathcal{F}_1, \mathcal{F}_2, ..., \mathcal{F}_r$, be arbitrary r elements in X. Using these points define a sequence (\mathcal{F}_n) as follows:

$$\overline{\mathcal{X}}_{n+r} = M(\overline{\mathcal{X}}_n, \overline{\mathcal{X}}_{n+1}, \dots, \overline{\mathcal{X}}_{n+r-1}), \qquad (n = 1, 2, \dots).$$

If there exists $n_0 \in \{1, 2, \dots r\}$ for which $\mathcal{T}_{n_0} = \mathcal{T}_{n_0+1}$ then

$$\mathcal{F}_{n_0+r} = M(\mathcal{F}_{n_0}, \mathcal{F}_{n_0+1}, \dots, \mathcal{F}_{n_0+r-1}) = M(\mathcal{F}_{n_0+r}, \mathcal{F}_{n_0+r}, \dots, \mathcal{F}_{n_0+r})$$

that is, \mathbb{Z}_{n_0+r} is a fixed point of M.

We assume that $\mathbb{Z}_{n+r} \neq \mathbb{Z}_{n+r+1}$ for all $n \in \mathbb{N}$. Since $\mathbb{Z}_{n+r} \leq M(\mathbb{Z}_{n+1}, \mathbb{Z}_{n+2}, ..., \mathbb{Z}_{n+r})$ and M is non-decreasing, we obtain

$$\overline{Y}_{n+1} \leq \overline{Y}_{n+2} \leq \overline{Y}_{n+3} \leq \cdots \leq \overline{Y}_{n+r} \leq \ldots$$

Denote $\kappa_{n+r} = p(\overline{\chi}_{n+r}, \overline{\chi}_{n+r+1})$, for n = 1, 2, ... and

$$P = \max\{p(\mathcal{F}_1, \mathcal{F}_2), p(\mathcal{F}_2, \mathcal{F}_3), \dots, p(\mathcal{F}_r, \mathcal{F}_{r+1})\}\$$

then we have $\kappa_{n+r} > 0$ for all $n \in \mathbb{N}$ and P > 0. Since $\mathcal{F}_{n+r} \leq \mathcal{F}_{n+r+1}$ and

$$p(M(\mathcal{F}_n, \mathcal{F}_{n+1}, ..., \mathcal{F}_{n+r-1}), M(\mathcal{F}_{n+1}, \mathcal{F}_{n+2}, ..., \mathcal{F}_{n+r})) > 0$$

for every $n \in \mathbb{N}$, then $(\mathcal{F}_n, \mathcal{F}_{n+1}) \in S^*$ and so for $n \leq r$, we have the following inequalities:

$$\begin{split} F(\kappa_{r+1}) &= F(p(\mathcal{F}_{r+1}, \mathcal{F}_{r+2})) \\ &= F(p(M(\mathcal{F}_1, \mathcal{F}_2, ..., \mathcal{F}_r), M(\mathcal{F}_2, \mathcal{F}_3, ..., \mathcal{F}_{r+1}))) \\ &\leqslant F(\max_{1\leqslant t\leqslant r} \{p(\mathcal{F}_t, \mathcal{F}_{t+1})\}) - \tau \\ &= F(P) - \tau \end{split}$$

$$\begin{split} F(\kappa_{r+2}) &= F(p(\mathcal{F}_{r+2}, \mathcal{F}_{r+3})) \\ &= F(p(M(\mathcal{F}_2, \mathcal{F}_3, ..., \mathcal{F}_{r+1}), M(\mathcal{F}_3, \mathcal{F}_4, ..., \mathcal{F}_{r+2}))) \\ &\leqslant F(\max_{2 \leqslant t \leqslant r+1} \{p(\mathcal{F}_t, \mathcal{F}_{t+1})\}) - 2\tau \\ &\leqslant F(P) - 2\tau \end{split}$$

and so on. Thus we obtain

$$F(\kappa_{n+r}) = F(p(\mathcal{F}_{n+r}, \mathcal{F}_{n+r+1}))$$

$$= F(p(M(\mathcal{F}_n, \mathcal{F}_{n+1}, ..., \mathcal{F}_{n+r-1}), M(\mathcal{F}_{n+1}, \mathcal{F}_{n+2}, ..., \mathcal{F}_{n+r}))$$

$$\leq F(\max_{n \leq t \leq n+r-1} \{p(\mathcal{F}_t, \mathcal{F}_{t+1})\}) - n\tau$$

$$\leq F(P) - n\tau$$
(3.4)

for $n \ge 1$. Letting $n \to \infty$ in (3.4) we obtain

$$\lim_{n\to\infty} F(\kappa_{n+r}) = -\infty \tag{3.5}$$

which implies from (F2) that

$$\lim_{n\to\infty} \kappa_{n+r} = 0. \tag{3.6}$$

From (F3) there exists $h \in (0, 1)$ such that

$$\lim_{n\to\infty} \kappa_{n+r}^h F(\kappa_{n+r}) = 0. \tag{3.7}$$

By (3.4), we have

$$\kappa_{n+r}^h F(\kappa_{n+r}) - \kappa_{n+r}^h F(P) \leqslant -\kappa_{n+r}^h n\tau \leqslant 0.$$
(3.8)

On taking the limit as $n \to \infty$, we obtain

$$\lim_{n\to\infty} n\kappa_{n+r}^h = 0. \tag{3.9}$$

Thus from (3.9) there exists $n_0 \in \mathbb{N}$ such that $n\kappa_{n+r}^h \leq 1$ for all $n \geq n_0$. Consequently we have

$$\kappa_{n+r} \leqslant \frac{1}{n^{\frac{1}{h}}}$$

for all $n \ge n_0$.

For any $n, m \in \mathbb{N}$ with $m > n \ge n_0$, we have

$$\begin{split} p(\overline{\mathcal{X}}_{n+r}, \overline{\mathcal{X}}_{m+r}) &= p(M(\overline{\mathcal{X}}_{n}, ..., \overline{\mathcal{X}}_{n+r-1}), M(\overline{\mathcal{X}}_{m}, ..., \overline{\mathcal{X}}_{m+r-1}))) \\ \leqslant p(M(\overline{\mathcal{X}}_{n}, \overline{\mathcal{X}}_{n+1}, ..., \overline{\mathcal{X}}_{n+r-1}), M(\overline{\mathcal{X}}_{n+1}, \overline{\mathcal{X}}_{n+2}, ..., \overline{\mathcal{X}}_{n+r})) + \\ p(M(\overline{\mathcal{X}}_{n+1}, \overline{\mathcal{X}}_{n+2}, ..., \overline{\mathcal{X}}_{n+r}), M(\overline{\mathcal{X}}_{n+2}, \overline{\mathcal{X}}_{n+3}, ..., \overline{\mathcal{X}}_{n+r+1})) + ... + \\ p(M(\overline{\mathcal{X}}_{m-1}, \overline{\mathcal{X}}_{m}, ..., \overline{\mathcal{X}}_{n+r-2}), M(\overline{\mathcal{X}}_{m}, \overline{\mathcal{X}}_{m+1}, ..., \overline{\mathcal{X}}_{n+r-1})) - \\ \{p(M(\overline{\mathcal{X}}_{n+1}, \overline{\mathcal{X}}_{n+2}, ..., \overline{\mathcal{X}}_{n+r}), M(\overline{\mathcal{X}}_{n+1}, \overline{\mathcal{X}}_{n+2}, ..., \overline{\mathcal{X}}_{n+r})) + \\ p(M(\overline{\mathcal{X}}_{m-1}, \overline{\mathcal{X}}_{m}, ..., \overline{\mathcal{X}}_{n+r+1}), M(\overline{\mathcal{X}}_{n+2}, \overline{\mathcal{X}}_{n+3}, ..., \overline{\mathcal{X}}_{n+r+1})) + ... + \\ p(M(\overline{\mathcal{X}}_{m-1}, \overline{\mathcal{X}}_{m}, ..., \overline{\mathcal{X}}_{n+r-1}), M(\overline{\mathcal{X}}_{n+1}, \overline{\mathcal{X}}_{n+2}, ..., \overline{\mathcal{X}}_{n+r})) + \\ p(M(\overline{\mathcal{X}}_{n+1}, \overline{\mathcal{X}}_{n+2}, ..., \overline{\mathcal{X}}_{n+r}), M(\overline{\mathcal{X}}_{n+2}, \overline{\mathcal{X}}_{n+3}, ..., \overline{\mathcal{X}}_{n+r+1})) + ... + \\ p(M(\overline{\mathcal{X}}_{m-2}, \overline{\mathcal{X}}_{m-1}, ..., \overline{\mathcal{X}}_{n+r}), M(\overline{\mathcal{X}}_{m-1}, \overline{\mathcal{X}}_{m}, ..., \overline{\mathcal{X}}_{n+r+1})) + ... + \\ p(M(\overline{\mathcal{X}}_{m-2}, \overline{\mathcal{X}}_{m-1}, ..., \overline{\mathcal{X}}_{n+r-3}), M(\overline{\mathcal{X}}_{m-1}, \overline{\mathcal{X}}_{m}, ..., \overline{\mathcal{X}}_{m+r-2})) \\ = p(\overline{\mathcal{X}}_{n+r}, \overline{\mathcal{X}}_{n+r+1}) + p(\overline{\mathcal{X}}_{n+r+1}, \overline{\mathcal{X}}_{n+r+2}) + ... + p(\overline{\mathcal{X}}_{m+r-2}, \overline{\mathcal{X}}_{m+r-1}) \\ = \kappa_{n+r} + \kappa_{n+r+1} + ... + \kappa_{m+r-2} < \sum_{t=n}^{\infty} \kappa_{t+r} \leqslant \sum_{t=n}^{\infty} \frac{1}{t^{\frac{1}{h}}} \to 0. \end{split}$$

This shows that (\mathcal{F}_n) is a Cauchy sequence in (X, p). Since (X, p) is complete partial metric spaces, the sequence (\mathcal{F}_{n+r}) convergence to some point $e \in X$. That is

$$\lim_{n,m\to\infty} p(\mathcal{F}_{n+r},e) = 0 = \lim_{n,m\to\infty} p(\mathcal{F}_{n+r},\mathcal{F}_{m+r}) = p(e,e).$$

Now if *M* is continuous, then we have

$$e = \lim_{n \to \infty} \mathcal{F}_{n+r} = \lim_{n \to \infty} M(\mathcal{F}_n, \mathcal{F}_{n+1}, ..., \mathcal{F}_{n+r-1})$$
$$= M(\lim_{n \to \infty} \mathcal{F}_n, \lim_{n \to \infty} \mathcal{F}_{n+1}, ..., \lim_{n \to \infty} \mathcal{F}_{n+r-1})$$
$$= M(e, e, ..., e).$$

We stated that X is regular, if the ordered partial metric spaces (X, \leq, p) provides the following condition:

If $\{\mathcal{F}_n\}\subseteq X$ is a nondecreasing sequence with $\mathcal{F}_n\to e\in X$, then $\mathcal{F}_n\le e$ for all $n\in\mathbb{N}$. Assume (X,\le,p) is regular, then $\mathcal{F}_n\le e$ for all $n\in\mathbb{N}$. Then two cases arised here.

Case 1. If there exists $n, r \in \mathbb{N}$ for which $\mathbb{Z}_{n+r} = e$ then we obtain

$$M(e, e, ..., e) = M(\mathcal{F}_{n+1}, \mathcal{F}_{n+2}, ..., \mathcal{F}_{n+r}) = \mathcal{F}_{n+r+1} \le e.$$

Moreover, since $\mathcal{T}_{n+r} \leq \mathcal{T}_{n+r+1}$, then $e \leq M(e, e, ..., e)$ and thus, e = M(e, e, ..., e). Case 2. Assume that $\mathcal{T}_n \neq e$ for every $n \in \mathbb{N}$ and

Since $\lim_{n\to\infty} \mathcal{F}_n = e$, then there exist $n_1 \in \mathbb{N}$ such that

$$p(\mathbb{Z}_{n+r+1}, M(e, e, ..., e)) > 0$$

and

$$p(\mathcal{F}_n,e)<\frac{p(e,M(e,e,...,e))}{2}$$

for all $n \ge n_1$, where $(\mathbb{F}_n, e) \in S^*$. Therefore by considering (F1), we have, for $n \ge n_1$,

$$\begin{split} \tau + F(p(M(\mathcal{F}_{n+1}, \mathcal{F}_{n+2}, ..., \mathcal{F}_{n+r}), M(e, e, ..., e))) &\leqslant F(\max_{n+1 \leqslant t \leqslant n+r} \{p(\mathcal{F}_t, e)\}) \\ &\leqslant F\left(\frac{p(e, M(e, e, ..., e))}{2}\right), \end{split}$$

which yields

$$p(\mathcal{F}_{n+r+1}, M(e, e, ..., e)) \leq \frac{p(e, M(e, e, ..., e))}{2}.$$

Taking limit as $n \to \infty$, we deduce that

$$p(e, M(e, e, ..., e)) \leq \frac{p(e, M(e, e, ..., e))}{2}$$

a contraction. Therefore we conclude that p(e, M(e, e, ..., e)) = 0, that is, e = M(e, e, ..., e). Now to see condition (A) it is sufficient to show that for every $\forall \mathcal{F}_{n+r} \in X$, $\lim_{n \to \infty} M(\mathcal{F}_n, \mathcal{F}_{n+1}, ..., \mathcal{F}_{n+r-1}) = e$ where e is the fixed point of M such that $e = \lim_{n \to \infty} M(\mathcal{F}_{n+1}, \mathcal{F}_{n+2}, ..., \mathcal{F}_{n+r})$. For which two cases arise:

Let $\mathcal{F}_{n+r} \in X$ and \mathcal{F}_{n+r+1} be as in Theorem 4.

Case 1: If $\overline{X}_{n+r} \leq \overline{X}_{n+r+1}$ or $\overline{X}_{n+r+1} \leq \overline{X}_{n+r}$, then

$$M(\mathcal{F}_n, \mathcal{F}_{n+1}, ..., \mathcal{F}_{n+r-1}) \leq M(\mathcal{F}_{n+1}, \mathcal{F}_{n+2}, ..., \mathcal{F}_{n+r})$$

or

$$M(\mathcal{F}_{n+1}, \mathcal{F}_{n+2}, ..., \mathcal{F}_{n+r}) \leq M(\mathcal{F}_{n}, \mathcal{F}_{n+1}, ..., \mathcal{F}_{n+r-1})$$

for all $n \in \mathbb{N}$. If

$$M(\mathcal{F}_n,\mathcal{F}_{n+1},...,\mathcal{F}_{n+r-1})=M(\mathcal{F}_{n+1},\mathcal{F}_{n+2},...,\mathcal{F}_{n+r})$$

for some $n \in \mathbb{N}$, then $M(\mathcal{F}_n, \mathcal{F}_{n+1}, ..., \mathcal{F}_{n+r-1}) \to e$. Now let

$$M(\mathcal{F}_n,\mathcal{F}_{n+1},...,\mathcal{F}_{n+r-1})\neq M(\mathcal{F}_{n+1},\mathcal{F}_{n+2},...,\mathcal{F}_{n+r})$$

for all $n \in \mathbb{N}$, then

$$p(M(\mathcal{F}_{n},\mathcal{F}_{n+1},...,\mathcal{F}_{n+r-1}),M(\mathcal{F}_{n+1},\mathcal{F}_{n+2},...,\mathcal{F}_{n+r}))>0$$

and so

 $(M(\mathcal{F}_n, \mathcal{F}_{n+1}, ..., \mathcal{F}_{n+r-1}), M(\mathcal{F}_{n+1}, \mathcal{F}_{n+2}, ..., \mathcal{F}_{n+r})) \in S^*$ for all $n \in \mathbb{N}$. Therefore from (3.1), we obtain

$$F(p(M(\mathcal{F}_n, \mathcal{F}_{n+1}, ..., \mathcal{F}_{n+r-1}), M(\mathcal{F}_{n+1}, \mathcal{F}_{n+2}, ..., \mathcal{F}_{n+r}))) \leqslant F(\max_{n \leqslant t \leqslant n+r-1} \{p(\mathcal{F}_t, \mathcal{F}_{t+1})\}) - n\tau$$

$$\leqslant F(P) - n\tau. \tag{3.10}$$

Taking into account (F2), from (3.10) we obtain

$$\lim_{n\to\infty} p(M(\mathbb{X}_n, \mathbb{X}_{n+1}, ..., \mathbb{X}_{n+r-1}), M(\mathbb{X}_{n+1}, \mathbb{X}_{n+2}, ..., \mathbb{X}_{n+r})) = 0$$

and then,

$$\lim_{n\to\infty} M(\mathcal{F}_n, \mathcal{F}_{n+1}, ..., \mathcal{F}_{n+r-1}) = \lim_{n\to\infty} M(\mathcal{F}_{n+1}, \mathcal{F}_{n+2}, ..., \mathcal{F}_{n+r}) = e.$$

Case 2: If $\mathcal{F}_{n+r} \not \leq \mathcal{F}_{n+r+1}$ or $\mathcal{F}_{n+r+1} \not \leq \mathcal{F}_{n+r}$ then from (A), there exist $\mathcal{F}_{m+r}, \mathcal{F}_{m+r+1} \in X$ such that $\mathcal{F}_{m+r+1} \leq \mathcal{F}_{n+r} \leq \mathcal{F}_{m+r}$ and $\mathcal{F}_{m+r+1} \leq \mathcal{F}_{m+r+1} \leq \mathcal{F}_{m+r}$. Therefore, as in the case 1, we can show that

$$\begin{split} \lim_{n\to\infty} M(\mathcal{F}_m, \mathcal{F}_{m+1}, ..., \mathcal{F}_{m+r-1}) &= \lim_{n\to\infty} M(\mathcal{F}_{m+1}, \mathcal{F}_{m+2}, ..., \mathcal{F}_{m+r}) \\ &= \lim_{n\to\infty} M(\mathcal{F}_n, \mathcal{F}_{n+1}, ..., \mathcal{F}_{n+r-1}) \\ &= \lim_{n\to\infty} M(\mathcal{F}_{n+1}, \mathcal{F}_{n+2}, ..., \mathcal{F}_{n+r}) = e. \end{split}$$

Also, we can show that the fixed point of M is unique the in this method. Suppose that e = M(e, e, ..., e) and f = M(f, f, ..., f) with $\forall (e, f) \in S^*$. Thus

$$p(M(e, e, ..., e), M(f, f, ..., f)) > 0.$$

Thus by given suppose we have

$$\tau + F(p(e, f)) = \tau + F(p(M(e, e, ..., e), M(f, f, ..., f))) \le F(p(e, f)).$$

a contraction as $\tau > 0$, so e = f.

Example 3. Let X = [0, 4] and $p(d, h) = \max(d, h)$. Define an order relation \leq on X as

$$\mathcal{F}_r \leq \mathcal{F}_{r+1} \Leftrightarrow [\mathcal{F}_r = \mathcal{F}_{r+1} \ or \ \mathcal{F}_r \leqslant \mathcal{F}_{r+1} with \ \mathcal{F}_r, \mathcal{F}_{r+1} \in X],$$

here \leq is usual order. Clearly, (X, \leq, p) be an ordered complete partial metric spaces. Let r positive integer and $M: X^r \to X$ be the mapping defined by

$$M(\mathcal{X}_1, \mathcal{X}_2, ..., \mathcal{X}_r) = \frac{\mathcal{X}_1 + \mathcal{X}_r}{8r}$$
 for all $\mathcal{X}_1, \mathcal{X}_2, ..., \mathcal{X}_r \in X$.

Define $F: \mathbb{R}_+ \to \mathbb{R}$ by $F(v) = v + \ln(v)$. Note that for $\tau = \ln(4r)$ and $\mathcal{F}_r \leq \mathcal{F}_{r+1}$. Thus

$$p(M(\mathcal{X}_1, \mathcal{X}_2, ..., \mathcal{X}_r), M(\mathcal{X}_2, \mathcal{X}_3, ..., \mathcal{X}_{r+1})) > 0,$$

we have

$$\begin{split} &\tau + F(p(M(\mathcal{F}_1, \mathcal{F}_2, ..., \mathcal{F}_r), M(\mathcal{F}_2, \mathcal{F}_3, ..., \mathcal{F}_{r+1}))) \\ &= \ln(4r) + F\left(\max\left\{\frac{\mathcal{F}_1 + \mathcal{F}_r}{8r}, \frac{\mathcal{F}_2 + \mathcal{F}_{r+1}}{8r}\right\}\right) \\ &= \ln(4r) + F\left(\frac{1}{8r}\left(\mathcal{F}_2 + \mathcal{F}_{r+1}\right)\right) = \ln(4r) + F\left(\frac{1}{8r}\left(p(\mathcal{F}_1, \mathcal{F}_2) + p(\mathcal{F}_r, \mathcal{F}_{r+1})\right)\right) \end{split}$$

$$\leq \ln(4r) + F\left(\frac{1}{4r}\left(p(\mathcal{F}_r, \mathcal{F}_{r+1})\right) = \ln(4r) + \frac{1}{4r}p(\mathcal{F}_r, \mathcal{F}_{r+1}) + \ln\frac{1}{4r}\left(p(\mathcal{F}_r, \mathcal{F}_{r+1})\right)$$

$$= \frac{1}{4r}p(\mathcal{F}_r, \mathcal{F}_{r+1}) + \ln p(\mathcal{F}_r, \mathcal{F}_{r+1}) \leq \max_{1 \leq t \leq r} \{p(\mathcal{F}_t, \mathcal{F}_{t+1})\} + \ln \max_{1 \leq t \leq r} \{p(\mathcal{F}_t, \mathcal{F}_{t+1})\}$$

$$= F\left(\max_{1 \leq t \leq r} \{p(\mathcal{F}_t, \mathcal{F}_{t+1})\}\right)$$

In addition for all $e, f \in X$ *with* $e \leq f$

$$p(M(e, e, ..., e), M(f, f, ..., f)) = \max\left\{\frac{e}{4r}, \frac{f}{4r}\right\} > 0$$

and

$$\begin{split} F(p(M(e,e,...,e),M(f,f,...,f))) = & F\left(\max\left\{\frac{e}{4r},\frac{f}{4r}\right\}\right) = F\left(\frac{1}{4r}p(d,h)\right) \\ = & \frac{1}{4r}p(d,h) + \ln\left(\frac{1}{4r}p(d,h)\right) \\ = & \frac{1}{4r}p(d,h) + \ln(p(d,h)) - \ln(4r) \\ \leqslant & p(d,h) + \ln(p(d,h)) - \tau = F(p(d,h)) - \tau \end{split}$$

Thus all the required assumptions of Theorem 4 are satisfied. In addition, for any arbitrary points $\mathcal{X}_1, \mathcal{X}_2, ..., \mathcal{X}_r \in X$, the sequence (\mathcal{X}_n) defined by (3.3) converges to e = 0, the unique fixed point of M.

Following is an example which illustrates that an ordered Prešić type *F*-contraction in partial metric space need not to be a Prešić type contraction in metric space.

Example 4. Let $X = \{ \mathcal{T}_r = \frac{2r(r+1)}{4}, \ r \in \mathbb{N} \}$ and $p(\mathcal{T}, \mathcal{A}) = \max\{\mathcal{T}, \mathcal{A}\}$. Define an order relation \leq on X as

$$\mathcal{F}_r \leq \mathcal{F}_{r+1} \Leftrightarrow [\mathcal{F}_r = \mathcal{F}_{r+1} \ or \ \mathcal{F}_r \leqslant \mathcal{F}_{r+1} with \ \mathcal{F}_r, \mathcal{F}_{r+1} \in X],$$

here \leq is usual order. Clearly, (X, \leq, p) be an ordered complete partial metric spaces. Define the mapping $M: X^2 \to X$ by

$$M(\mathcal{F}, \mathcal{A}) = \frac{\mathcal{F}_r + \mathcal{A}_r}{2}$$
 for all $\mathcal{F}_r, \mathcal{A}_r \in X$.

We claim that M is an ordered Prešić type F-contraction mapping with respect to $F(v) = v + \ln(v)$ and $\tau = \frac{1}{2}$. To see this, we shall prove that M satisfies the condition (3.1). Then we obtain

$$\begin{split} p(M(\mathcal{F}_{r-1},\mathcal{F}_r),M(\mathcal{F}_r,\mathcal{F}_{r+1}))e^{p(M(\mathcal{F}_{r-1},\mathcal{F}_r),M(\mathcal{F}_r,\mathcal{F}_{r+1}))-\max\{p(\mathcal{F}_{r-1},\mathcal{F}_r),p(\mathcal{F}_r,\mathcal{F}_{r+1})\}} \\ &= \frac{r^2+2r+1}{2}e^{\frac{-r-1}{2}} \\ &< \frac{r^2+3r+2}{2}e^{-\frac{1}{2}} = e^{-\frac{1}{2}}\max\{p(\mathcal{F}_{r-1},\mathcal{F}_r),p(\mathcal{F}_r,\mathcal{F}_{r+1})\}. \end{split}$$

Therefore Theorem 3 implies that M has a unique fixed point, that is, M(1,1) = 1.

On the other hand, it is not Prešić type contraction in metric spaces, where d(d,h) = |d-h|, for all $d, h \in X$. Hence the condition of Theorem 2 is not satisfied. Since

$$\lim_{r \to \infty} \frac{p(M(\mathcal{F}_{r-1}, \mathcal{F}_r), M(\mathcal{F}_r, \mathcal{F}_{r+1}))}{\max\{p(\mathcal{F}_{r-1}, \mathcal{F}_r), p(\mathcal{F}_r, \mathcal{F}_{r+1})\}} = \lim_{r \to \infty} \frac{2r^2 + 4r + 2}{2r^2 + 6r + 4} = 1,$$

the condition of Theorem 2.1 in [14] is not satisfied.

This example shows the new class of ordered Prešić type F-contraction operators is not included in Prešić type classes of operators known in literature.

The following results are an relation consequence of Theorem 4 by taking $F(v) = \ln v$.

Corollary 2. Let (X, \leq, p) be an ordered complete partial metric space, r positive integer and $M: X^r \to X$ a given mapping. Assume that there exists $\tau > 0$ such that

$$p(M(\mathcal{F}_1, \mathcal{F}_2, ..., \mathcal{F}_r), M(\mathcal{F}_2, \mathcal{F}_3, ..., \mathcal{F}_{r+1})) \leqslant e^{-\tau} \max_{1 \leqslant i \leqslant r} \{ p(\mathcal{F}_i, \mathcal{F}_{i+1}) \}, \tag{3.11}$$

for all $(\mathcal{X}_1, \mathcal{X}_2, ..., \mathcal{X}_{r+1}) \in X^{r+1}$ with $\mathcal{X}_r \leq \mathcal{X}_{r+1}$. Then for any arbitrary points $\mathcal{X}_1, \mathcal{X}_2, ..., \mathcal{X}_r \in X$, the sequence (\mathcal{X}_n) defined by (3.3) converges to e, and e is a fixed point of M. That is, e = M(e, e, ..., e). Moreover if

$$p(M(e, e, ..., e), M(f, f, ..., f)) \le e^{-\tau} p(e, f)$$

holds for all $e, f \in X$ with $e \leq f$, then e is the unique fixed point of M.

Corollary 3. Let (X, \leq, p) be an ordered complete partial metric space, r positive integer and $M: X^r \to Xa$ given mapping. Assume that there exists $\delta_1, \delta_2, \ldots, \delta_k$ non-negative constants with $\delta_1 + \delta_2 + \cdots + \delta_r < 1$ such that

$$p(M(\mathcal{X}_{1}, \mathcal{X}_{2}, ..., \mathcal{X}_{r}), M(\mathcal{X}_{2}, \mathcal{X}_{3}, ..., \mathcal{X}_{r+1})) \leq \delta_{1}p(\mathcal{X}_{1}, \mathcal{X}_{2}) + \delta_{2}p(\mathcal{X}_{2}, \mathcal{X}_{3}) + ... + \delta_{r}p(\mathcal{X}_{k}, \mathcal{X}_{r+1})$$
(3.12)

for all $(\mathcal{X}_1, \mathcal{X}_2, ..., \mathcal{X}_{r+1}) \in X^{r+1}$ with $\mathcal{X}_r \leq \mathcal{X}_{r+1}$. Then for any arbitrary points $\mathcal{X}_1, \mathcal{X}_2, ..., \mathcal{X}_r \in X$, the sequence (\mathcal{X}_n) defined by (3.3) converges to e, where e is the unique fixed point of M.

Proof: Clearly condition (3.12) implies condition (3.11) with $\delta = \delta_1 + \delta_2 + \cdots + \delta_r$. Now, let $e, f \in X$ with $e \leq f$. From (3.12), we have

$$\begin{split} p(M(e,e,...,e),&M(f,f,...,f)) \leqslant p(M(e,e,...,e),M(e,e,...,e,f)) + \\ &p(M(e,e,...,e,f),M(e,e,...,e,f,f)) + ... + \\ &p(M(e,f,...,f),M(f,f,...,f)) - \\ &\{p(M(e,e,...,e,f),M(e,e,...,e,f)) + \\ &p(M(e,e,...,e,f,f),M(e,e,...,e,f,f)) + ... + \\ &p(M(e,f,...,f),M(f,f,...,f))\} \\ \leqslant &p(M(e,e,...,e),M(e,e,...,e,f)) + \\ &p(M(e,e,...,e,f),M(e,e,...,e,f,f)) + ... + \\ &p(M(e,f,...,f),M(f,f,...,f)) \\ \leqslant &(\delta_1 + \delta_2 + \cdots + \delta_r)p(e,f) = \delta p(e,f), \end{split}$$

where $\delta = \delta_1 + \delta_2 + \cdots + \delta_r \in (0, 1)$. Therefore all the assumption of corollary 2 are satisfied.

4. Conclusions

In the present article, we prove the fixed point theorems for ordered Prešić type θ -contractivity and ordered Prešić type F-contraction mappings. Also, we provide examples showing that our main theorems are applicable.

Acknowledgments

The authors wish to thank the referees for their careful reading of the manuscript and valuable suggestions. This research received no external funding.

Conflict of interest

The authors declare that no competing interests exist.

References

- 1. S. Banach, Sur les operations dans les ensembles abstracits et leur application aux equations integrales, Fund. Math., 3 (1922), 133–181.
- 2. S. G. Matthews, *Partial metric topology*, Annals New York Academi Sci., **728** (1994), 183–197.
- 3. M. A. Alghamdi, N. Shahzad, O. Valero, *On fixed point theory in partial metric spaces*, Fixed Point Theory Appl., **2012**, 175.
- 4. T. Abdeljawad, E. Karapınar, K. Taş, *A generalized contraction principle with control functions on partial metric spaces*, Comput. Math. Appl., **63**, (2012), 716–719.
- 5. S. Romaguera, P. Tirado, O. Valero, *Complete partial metric spaces have partially metrizable computational models*, Int. J. Comput. Math., **89** (2012), 284–290.
- 6. S. Romaguera, *Fixed point theorems for generalized contractions on partial metric spaces*, Topol. Appl., **159** (2012), 194–199.
- 7. E. Karapınar, I. M. Erhan, *Fixed point theorems for operators on partial metric spaces*, Appl. Math. Lett., **24** (2011), 1894–1899.
- 8. A. C. M. Ran, M. C. B. Reurings, *A fixed point theorem in partially ordered sets and some application to matrix equations*, Proc. Amer. Math. Soc., **132** (2004), 1435–1443.
- 9. R. P. Agarwal, M. A. El-Gebeily, D. O'Regan, *Generalized contractions in partially ordered metric spaces*, Appl. Anal., **87** (2008), 109–116.
- 10. I. Altun, H. Şimşek, *Some fixed point theorems on ordered metric spaces and application*, Fixed Point Theory Applications, **2010**, Article ID 621469.
- 11. L. B. Ćirić, N. Cakić, M. Rajovic, et al. *Monotone generalized nonlinear contractions in partially ordered metric spaces*, Fixed Point Theory and Applications, **2008**, Article ID 131294.
- 12. S. B. Prešić, Sur une classe d'in equations aux difference finite et. sur la convergence de certains suites, Publ de L'Inst Math., 5 (1965), 75–78.

- 13. L. B. Ćirić, S. B. Prešić, *On Prešić type generalization of the Banach contraction mapping principle*, Acta Math. Univ. Comenianae., **76** (2007), 143–147.
- 14. T. Nazır, M. Abbas, Common fixed point of Prešić type contraction mappings in partial metric spaces, J. Nonlinear Anal. Optim., 5 (2013), 49–55.
- 15. M. Jleli, B. Samet, *A new generalization of the Banach contraction principle*, J. Inequal. Appl., **2014**, 38.
- 16. D. Wardowski, *Fixed point of a new type of contactive mappings in complete metric spaces*, Fixed Point Theory Appl., **2012**, 94.
- 17. G. Durmaz, G. Minak, I. Altun, *Fixed points of ordered F-contractions*. Hacettepe J. Math. Stat., **45** (2016), 15–21.
- 18. H. H. Alsulami, E. Karapınar, H. Piri, *Fixed points of modified F-contractive mappings in complete metric-like spaces*, J. Funct Spaces, **2015**, Article ID: 270971.
- 19. G. Mınak, A. Helvacı, I. Altun, Ćirić type generalized F-contractions on complete metric spaces and fixed point results, Filomat, **28** (2014), 1143–1151.
- 20. M. Abbas, M. Berzig, T. Nazır, et al. *Iterative approximation of fixed points for Prešić type F-Contraction operators*, UPB Sci Bull Series A., **78** (2016), 1223–7027.

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)