Research article

The new reflected power function distribution: Theory, simulation & application

  • Received: 29 April 2020 Accepted: 08 June 2020 Published: 10 June 2020
  • MSC : 60E05

  • The aim of the paper is to propose a new Reflected Power function distribution (RPFD). We provide the various properties of the new model in detail such as moments, vitality function and order statistics. We characterize the RPFD based on conditional moments (Right and Left Truncated mean) and doubly truncated mean. We also study the shape of the new distribution to be applicable in many real life situations. We estimate the parameters for the proposed RPFD by using different methods such as maximum likelihood method, modified maximum likelihood method, percentile estimator and modified percentile estimator. The aim of the study is to increase the application of the Power function distribution (PFD). Using two different data sets from real life, we conclude that the RPFD perform better as compare to different competitor models already exist in the literature. We hope that the findings of this paper will be useful for researchers in different field of applied sciences.

    Citation: Azam Zaka, Ahmad Saeed Akhter, Riffat Jabeen. The new reflected power function distribution: Theory, simulation & application[J]. AIMS Mathematics, 2020, 5(5): 5031-5054. doi: 10.3934/math.2020323

    Related Papers:

  • The aim of the paper is to propose a new Reflected Power function distribution (RPFD). We provide the various properties of the new model in detail such as moments, vitality function and order statistics. We characterize the RPFD based on conditional moments (Right and Left Truncated mean) and doubly truncated mean. We also study the shape of the new distribution to be applicable in many real life situations. We estimate the parameters for the proposed RPFD by using different methods such as maximum likelihood method, modified maximum likelihood method, percentile estimator and modified percentile estimator. The aim of the study is to increase the application of the Power function distribution (PFD). Using two different data sets from real life, we conclude that the RPFD perform better as compare to different competitor models already exist in the literature. We hope that the findings of this paper will be useful for researchers in different field of applied sciences.


    加载中


    [1] C. Dallas, Characterization of Pareto and Power function distribution, Ann. I. Stat. Math., 28 (1976), 491-497. doi: 10.1007/BF02504764
    [2] M. Meniconi, D. M. Barry, The Power function distribution: A useful and simple distribution to assess electrical component reliability, Microelectron. Reliab., 36 (1996), 1207-1212. doi: 10.1016/0026-2714(95)00053-4
    [3] R. C. Gupta, P. L. Gupta, R. D. Gupta, Modeling failure time data by lehman alternatives, Commun. Stat. Theory Methods, 27 (1997), 887-904.
    [4] R. D. Gupta, D. Kundu, Exponentiated exponential family: An alternative to Gamma and Weibull Distributions, Biom. J., 43 (2001), 117-130. doi: 10.1002/1521-4036(200102)43:1<117::AID-BIMJ117>3.0.CO;2-R
    [5] S. Nadarajah, S. Kotz, The exponentiated type distributions, Acta Appl. Math., 92 (2006), 97-111. doi: 10.1007/s10440-006-9055-0
    [6] G. M. Cordeiro, E. M. M. Ortega, D. C. C. Cunh, The exponentiated generalized class of distributions, J. Data Sci., 11 (2013), 1-27.
    [7] A. W. Marshall, I. Olkin, A new method for adding a parameter to a family of distributions with application to the Exponential and Weibull families, Biometrika, 84 (1997), 641-652. doi: 10.1093/biomet/84.3.641
    [8] N. Eugene, C. Lee, F. Famoye, The Beta-Normal distribution and its applications, Commun. Stat. Theory Methods, 31 (2002), 497-512.
    [9] W. T. Shaw, I. R. Buckley, The alchemy of probability distributions: Beyond gram-charlier expansions, and a skew-kurtotic-Normal distribution from a rank transmutation map, arXiv preprint arXiv: 0901.0434, 2009.
    [10] G. O. Silva, E. M. M. Ortega, G. M. Cordeiro, The beta modified Weibull distribution, Lifetime Data Anal., 16 (2010), 409-430. doi: 10.1007/s10985-010-9161-1
    [11] K. Zografos, N. Balakrishnan, On families of beta and generalized Gamma generated distributions and associated inference, Stat. Methodol., 6 (2009), 344-362. doi: 10.1016/j.stamet.2008.12.003
    [12] G. M. Cordeiro, M. De-Castro, A new family of generalized distributions, J. Stat. Comput. Simul., 81 (2011), 883-898.
    [13] C. Alexander, G. M. Cordeiro, E. M. M. Ortega, et al. Generalized beta-generated distributions, Comput. Stat. Data Anal., 56 (2012), 1880-1897.
    [14] L. M. Zea, R. B. Silva, M. Bourguignon, et al. The beta exponentiated Pareto distribution with application to bladder cancer susceptibility, Int. J. Stat. Probab., 1 (2012), 8-19.
    [15] A. Alzaatreh, F. Famoye, C. Lee, A new method for generating families of continuous distributions, Metron, 71 (2013), 63-79.
    [16] M. Alizadeh, G. M. Cordeiro, A. D. C. Nascimento, et al. Odd-Burr generalized family of distributions with some applications, J. Stat. Comput. Simul., 87 (2017), 367-389.
    [17] G. M. Cordeiro, E. M. M. Ortega, B. V. Popovic, et al. The Lomax generator of distributions: Properties, manification process and regression model, Appl. Math. Comput., 247 (2014), 465-486.
    [18] S. Nadarajah, G. M. Cordeiro, E. M. M. Ortega, The Zografos-Balakrishnan-G family of distributions: Mathematical properties and applications, Commun. Stat. Theory Methods, 44 (2015), 186-215. doi: 10.1080/03610926.2012.740127
    [19] G. Aryal, I. Elbatal, On the exponentiated generalized modified Weibull distribution, Commun. Stat. Appl. Methods, 22 (2015), 333-348.
    [20] S. Cakmakyapan, G. Oze, The Lindley family of distributions: Properties and applications, Hacettepe J. Math. Stat., 46 (2016), 1113-1137.
    [21] H. Haghbin, G. Ozel, M. Alizadeh, et al. A new generalized odd log-logistic family of distributions, Commun. Stat. Theory Methods, 46 (2017), 9897-9920.
    [22] Z. Iqbal, A. Nawaz, N. Riaz, et al. Marshall and Olkin moment Exponential distribution, J. Issos, 4 (2018), 13-31.
    [23] E. Krishna, K. K. Jose, T. Alice, et al. The Marshall-Olkin Fréchet distribution, Commun. Stat. Theory Methods, 42 (2013), 4091-4107.
    [24] A. J. Lemonte, The beta log-logistic distribution, Braz. J. Probab. Stat., 24 (2012), 313-332.
    [25] J. Rodrigues, G. M. Cordeiro, J. Bazan, The exponentiated generalized Lindley distribution, Asian Research J. Math., 5 (2017), 1-14.
    [26] G. Ozel, M. Alizadeh, S. Cakmacyapan, et al. The odd log-logistic Lindley Poisson model for lifetime data, Commun. Stat. Simul. Comput., 46 (2017), 6513-6537.
    [27] M. Alizadeh, M. H. Tahir, G. M. Cordeiro, et al. The Kumaraswamy Marshal-Olkin family of distributions, J. Egypt. Math. Soc., 23 (2015), 546-557.
    [28] G. M. Cordeiro, M. Alizadeh, G. Ozel, et al. The generalized odd log-logistic family of distributions: Properties, regression models and applications, J. Stat. Comput. Simul., 87 (2017), 908-932.
    [29] F. A. Bhatti, G. G. Hamedani, M. C. Korkmaz, et al. Burr III-Marshall and Olkin family: Development, properties, characterizations and applications, J. Stati. Distrib. Appl., 6 (2019), 12.
    [30] M. A. Haq, G. G. Hamedani, M. Elgarhy, et al. Marshall-Olkin Power Lomax distribution: Properties and estimation based on complete and censored samples, Int. J. Stat. Probab., 9 (2020), 48-62.
    [31] M. Tahir, M. Alizadeh, M. Mansoor, et al. The Weibull-Power function distribution with applications, Hacettepe J. Math. Stat., 45 (2014), 245-265.
    [32] N. Shahzad, M. Asghar, Transmuted Power function distribution: A more flexible distribution, J. Stat. Manage. Syst., 19 (2016), 519-539.
    [33] A. S. Hassan, S. M. Assar, The exponentiated Weibull-Power function distribution, J. Data Sci., 16 (2017), 589-614.
    [34] M. Ibrahim, The Kumaraswamy Power function distribution, J. Stat. Appl. Probab., 6 (2017), 81-90.
    [35] R. Usman, N. Bursa, O. Z. E. L. Gamze, Exponentiated transmuted Power function distribution: Theory and applications, Gazi Univ. J. Sci., 31 (2018), 660-675.
    [36] M. A. Haq, R. M. Usman, N. Bursa, et al. McDonald's Power function distribution with theory and applications, Int. J. Stat. Econ., 19 (2018), 89-107.
    [37] A. Zaka, A. S. Akhter, R. Jabeen, The exponentiated generalized Power function distribution: Theory and real life applications, Adv. Appl. Stat., 61 (2020), 33-63.
    [38] A. C. Cohen, The Reflected Weibull distribution, Technometric, 15 (1973), 867- 873.
    [39] R. Glaser, Bathtub and related failure rate characterizations, J. Am. Stat. Assoc., 75 (1980), 667-672.
    [40] S. D. Dubey, Some percentile estimators for Weibull parameters, Technometrics, 9 (1967), 119-129.
    [41] N. B. Marks, Estimation of Weibull parameters from common percentiles, J. Appl. Stat., 32 (2005), 17-24.
    [42] P. Feigl, M. Zelen, Estimation of exponential survival probabilities with concomitant information, Biometrics, 21 (1965), 826-838.
    [43] E. T. Lee, J. W. Wang, Statistical methods for survival data analysis, 3 Eds, Wiley: New York, 2003.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4177) PDF downloads(408) Cited by(11)

Article outline

Figures and Tables

Figures(8)  /  Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog