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Abstract: The aim of the paper is to propose a new Reflected Power function distribution (RPFD). 

We provide the various properties of the new model in detail such as moments, vitality function 

and order statistics. We characterize the RPFD based on conditional moments (Right and Left 

Truncated mean) and doubly truncated mean. We also study the shape of the new distribution to be 

applicable in many real life situations. We estimate the parameters for the proposed RPFD by using 

different methods such as maximum likelihood method, modified maximum likelihood method, 

percentile estimator and modified percentile estimator. The aim of the study is to increase the 

application of the Power function distribution (PFD). Using two different data sets from real life, 

we conclude that the RPFD perform better as compare to different competitor models already exist 

in the literature. We hope that the findings of this paper will be useful for researchers in different 

field of applied sciences. 
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1. Introduction 

In the field of reliability and engineering sciences, the researchers mostly prefer to use simple 

models to obtain failure rates over mathematically complex models. The inverse of Pareto 

distribution was given by Dallas [1] and named as Power function distribution (PFD). Afterwards 

Meniconi and Barry [2] preferred to use PFD on Exponential, Lognormal and Weibull distributions 
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as a better fit for the failure rate data. 

In recent years, the generalization of the probability distribution has gained great attention. For 

example Gupta et al. [3], Gupta and Kundu [4], Nadarajah et al. [5] gave the generalization of many of 

the distributions from literature to exponentiated type distributions for being more flexible to fit to many 

data sets. Cordeiro et al. [6] introduced exponentiated generalized distributions which were then used by 

many authors for generalizing different distributions. To get more insight to generalized distributions, 

interested readers are advised to study Marshall and Olkin [7], Eugene et al. [8]. Shaw and Buckley [9], 

Silva et al. [10], Zografos and Balakrishnan [11], Cordeiro and de Castro [12], Alexander et al. [13], 

Zea et al. [14], Alzaatreh et al. [15,16], Cordeiro, Ortega, Popović, and Pescim [17], Nadarajah, 

Cordeiro and Ortega [18], Aryal and Elbatal [19], Cakmakyapan and Ozel [20], Haghbin et al. [21], 

Iqbal et al. [22], Karishna et al. [23], Lemonte et al. [24], Rodrigues et al. [25] and Ozel et al. [26]. 

Alizadeh et al. [27], Cordeiro et al. [28], Bhatti et al. [29] and Haq et al. [30]. 

A lot of work is available in literature on the generalization of PFD for example Tahir et al. [31], 

Shahzad and Asghar [32], Hassan and Assar [33], Ibrahim [34], Usman et al. [35], Haq et al. [36] and 

Zaka et al. [37]. 

In this paper, we suggest a new probability distribution which reflects the PFD by using Cohen [38]. 

The literature, we have studied up till now provide us the modifications of probability distributions 

by using some generators which include more complicated mathematical expressions. The idea 

behind the current work is to provide a simple probability distribution which provide more real life 

application by inducting only one new parameter which is called reflecting parameter. The detail is 

discussed under the following sections. We have derived some of the main structural properties and 

characterizations of this distribution. The application of this distribution has also been demonstrated 

with the help of a real life situation where this distribution may best perform. 

2. Materials and methods 

2.1. Model identification 

The probability density function (PDF) of PFD is given as follows 

     
     

  
                               (1) 

The cumulative density function (CDF) of PFD is 

      
 

 
 
 
          (2) 

Where γ,   are respectively the shape and scale parameters. 

Therefore, RPFD with the help of Cohen [38] technique by reflecting the classical PFD about 

variate axis at         is, 

       
      

  
          (3) 

And 
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                           (4) 

Where     is the reflecting parameter that will reflect the distribution towards positive skewed 

to negative skewed or negative skewed to positive skewed. Also γ,   are the shape and scale 

parameters. 

The survival function, hazard rate function (HRF) and cumulative hazard rate function of RPFD 

are written as 

     
      

  
           (5) 

     
 

   
            (6) 

                       

2.2. Asymptotic behavior 

We see the asymptotic behavior of the PDF, CDF, hazard and survival functions of RPFD as 

x → 0 and x → ∞. 

i.                                     

ii.                                                 

iii.                                     

iv.                                    

v.                                      

vi.                                    

vii.                                    

viii.                                    

ix.                                    

x.                                    

xi.                             

xii.                            

2.3. Characteristics of hazard function using Glaser method 

We use the conditions defined by Glaser [39] as 

      
     

    
   



5034 

AIMS Mathematics  Volume 5, Issue 5, 5031–5054. 

     
     

     
   

      
     

      
   

If x > 0, then         under the following conditions 

i. If    , then        . 

ii. If    , then        . 

iii. If           , then        . 

The above conditions show that the hazard rate function of RFPD is increasing but if 

          , then it will be decreasing function. 

2.4. Shapes 

The RPFD can be negative-skewed, positive-skewed, whereas the HRF can be J-shape, 

monotonically increasing and decreasing shapes. (See Figures 1–3). 

 

Figure 1. PDF plots of RPFD. 
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Figure 2. CDF plots of RPFD. 

 

Figure 3. HRF plots of RPFD. 

2.5. Moments about Zero 

The r
th

 moments about zero of any distribution is described below 
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By solving we get 

  
   

         

  

         

        
 
                 

     
  

          (7) 

Figure 4 shows the behavior of moments under different parametric values for RPFD. 

 

Figure 4. Plots of moments under different parametric values of RPFD. 

2.6. Moment generating function 

The moment generating function define the characteristic of a random variable. The moment 

generating function is defined as the linear combination of exponential generalized univariate 

distributions as 

          
         

  

 

   

    

If “X” follows RPFD, the moment generating function is derived as, 

       
    

  
 

       

  

          

        

 
    

                 

     
  

        (8) 

2.7. Random number generator 

The random number are obtained from 

    
      

  
             (9) 

Where “   is the random numbers generated from Uniform distribution [0 1]. 
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After simplifying (9) for RPFD we get, 

          
 
   

2.8. Inverse moments 

The inverse moments are obtained as 

    
      

         

  

 

   

             

We get inverse moments for RPFD as 

   
   

         

  

         

        
 
                   

      
  

         (10) 

2.9. Mean residual function 

By definition, the mean residual function is given as 

      
    

    

 

   

     

For RPFD, we get mean residual function as 

     
   

   
.          (11) 

2.10. Vitality function 

The vitality function is obtained for RPFD as 

     
 

    
       
 

 

    

That is obtained as 

     
 

                

        
 
    

         

   
 

      
        (12) 

2.11. Incomplete moments 

The incomplete moments are given as 
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By simplifying for RPFD we get 

            
                

          
 
                 

     
  

       (13) 

2.12. Conditional moments  

The conditional moments are given as 

          
 

     
             

 

   

 

 

    

The conditional moments for RPFD are obtained by using above expression as 

           
                

               
 
             

     
   

       (14) 

2.13. Characterization 

2.13.1. Characterization based on conditional moment (Left Truncated Mean) 

Let “X” be Reflected Power function Variable with Probability density function 

     
         

  
          

And let       be the survival function respectively. Then the random variable “X” has RPFD if 

and only if 

         
 

      
                  

        

   
 
    

   
   

                                                 

Proof: 

Necessary part: 

          
 

    
   
 

   

         

  
    

          
 

      
                  

        

   
 
    

   
       (15) 
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Also Sufficient part 

          
 

    
   
 

   

        

            
    

    

 

 
           (16) 

Equate (15) and (16), we get 

             
 

 

 
 

  
                  

        

   
 
    

   
   

                
 

  
                            

     
         

  
                      

2.13.2. Characterization based on conditional moment (Right Truncated) 

Let “X” be Reflected Power function Variable with Probability density function 

     
         

  
          

And let       be the survival function respectively. Then the random variable “X” has RPFD if 

and only if 

         
 

       
         

        

   
   

                                                    

Proof: 

         
 

     
   
 

 

         

  
    

         
 

       
         

        

   
        (17) 

Now sufficient part 

             
     

     

 

 
           (18) 

Equate (17) and (18), we get 
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2.13.3. Characterization based on conditional moment (Doubly Truncated Mean) 

Let “X” be Reflected Power function Variable with Probability density function 

     
         

  
          

And let       be the survival function respectively. Then the random variable “X” has RPFD if 

and only if 

           
 

             
                  

        

   
 
        

   
   

                                         

Proof: 

Necessary part: 

           
 

         
  

         

  

 

 

    

           
 

             
                  

        

   
 

        

   
  (19) 

Now Sufficient Part: 

           
 

           
   
 

 

         

           
                 

 
   

         
                  (20) 

Equate (19) and (20), we get 



5041 

AIMS Mathematics  Volume 5, Issue 5, 5031–5054. 

                 
 

 
  

         

 
 

             
                  

        

   
 
        

   
   

After differentiating the above equation  

                
 

  
                             

     
         

  
                      

3. Estimation of the parameters for RPFD 

3.1. Maximum Likelihood Method (MLM) 

Let x1, x2 ,..., xn be a random sample of size n from the RPFD. The log-likelihood function for 

the RPFD is given by 

                            

 

   

           

The score vector is 

        
  

 
           (21) 

        
 

 
           

 
                 (22) 

The parameters of RPFD can be obtained by solving the above equations resulting from setting 

the two partial derivatives of L( ,  ) to zero. Since   does not exist, the likelihood function can be 

maximized by taking 

                  (23) 

where xn is the maximum value in the data. 

     
 

                 
 
    

   

3.2. Modified Maximum Likelihood Method (MMLM) 

In this modification of the MLM, the Eq (21) is replaced by the median of RPFD. 
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By solving the above expression, we get 

   
    

        
   

 

 
           

 

   

     
    

     
 
 

     

     
            

                    
 
    

   

3.3. Estimation of RPFD Parameters from “Common Percentiles” (P.E) 

Dubey [40] proposed a percentile estimator of the shape parameter, based on any two sample 

percentiles. Marks [41] also estimated the parameters of Weibull distribution with the help of 

percentiles and named it as Common Percentile Method. 

Let                be a random sample of size n drawn from Probability density function of 

Reflected Power function distribution. The cumulative distribution function of a Reflected Power 

function distribution with shape, scale and reflected parameters            , respectively 

       
      

  
  

By solving we get 

           
 
              (24) 

Where R =     , 

Let P75 and P25 are the 75th and 25th Percentiles,                         

               
 
               (25) 

               
 
               (26) 

Solving the above equations, we get 
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Where H= Maximum Percentage, L= Minimum Percentage and P = Percentile. 

3.4. Modified Percentile Estimator (M.P.E) 

In this modification of the percentile estimators, (25) is replaced by the Median of Reflected 

Power function distribution. 

           
 
                   

   
    

        
               (27) 

Also     
      

     
 
  
   

Therefore 

      

     
 
  
  

    

        
   

   
    

   
   

 

    
    
    

 
  

   
    

         
   

Where H= Maximum Percentage and P = Percentile. 

A simulation study is used in order to compare the performance of the proposed estimation 

methods. We carry out this comparison taking the samples of sizes as n = 40 and 100 with pairs of 

( ,  ) = {(1, 2), (2, 1) and (1.5, 1.5)}. We have generated random samples (using Monte Carlo 

Simulation) of different sizes by observing that if    is random number taking (0, 1), then 

              
 
   is the random number generator from RPFD with ( ,   and  ) parameters. 

All results are based on 5000 replications. Such generated data have been used to obtain estimates of 

the unknown parameters. The results obtained from parameters estimation of the 3-parameters of 
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RPFD using different sample sizes and different values of parameters with mean square error MSE. 

                  –    
 
                   –    

 
  . 

If we study the results of the Tables (1–4), in which sample sizes are (40 and 100) and the 

combinations of the values of ( ,  ) = {(1, 2), (2, 1) and (1.5, 1.5)}. Then we get the results that P.E 

is the best for the estimation of   and    After P.E, the M.P.E and MMLM are best for the 

estimation of scale and shape parameters of the Reflected Power function distribution. 

Table 1. Estimates for the parameters of RPFD with different estimation methods under 

the sample size 40 and    . 

Table 2. Estimates for the parameters of RPFD with different estimation methods under 

the sample size 100 and    . 

Methods True Values Estimated Values M.S.E 

                 

MLM 1 2 1.911707 0.8737091 0.8332793 1.271054 

 2 1 1.980318 1.021556 0.0007741486 0.01242771 

 1.5 1.5 1.937788 1.090384 0.193427 0.1768533 

MMLM 1 2 0.9994136 2.189761 0.01358523 0.5419498 

 2 1 2.021388 1.097434 0.2220572 0.1394513 

 1.5 1.5 1.502983 1.64057 0.05312658 0.4238924 

P.E 1 2 0.9942939 2.064027 0.001284654 0.09483498 

 2 1 1.97935 1.038889 0.02085466 0.02730554 

 1.5 1.5 1.491543 1.546539 0.005078406 0.0575562 

M.P.E 1 2 0.9947556 2.124453 0.007408561 0.2137276 

 2 1 2.008241 1.053431 0.1246356 0.05205558 

 1.5 1.5 1.993461 1.586269 0.05174126 0.1175413 

Methods True Values Estimated Values M.S.E 

                 

MLM 1 2 1.8605 0.9009 0.745594 1.21558 

 2 1 1.9515 1.060192 0.004528007 0.04585 

 1.5 1.5 1.887127 1.143243 0.1558585 0.16375 

MMLM 1 2 1.006088 2.93567 0.03329484 295.313 

 2 1 2.038784 1.222506 0.5796605 27.00332 

 1.5 1.5 1.498582 2.008228 0.1275258 80.45536 

P.E 1 2 0.9875404 2.178675 0.003350733 0.3289041 

 2 1 1.950996 1.09437 0.05049464 0.07982446 

 1.5 1.5 1.476918 1.625356 0.0125727 0.1674232 

M.P.E 1 2 0.9888006 2.301893 0.01736244 0.7273792 

 2 1 1.999309 1.150733 0.3069483 0.1901581 

 1.5 1.5 1.492606 1.716947 0.07259521 0.41003 
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Table 3. Estimates for the parameters of Reflected Power function distribution with 

different estimation methods under the sample size 40 and    . 

Methods True Values Estimated Values M.S.E 

                 

MLM 1 2 2.860517 0.6471663 3.466684 1.831741 

 2 1 2.951451 0.7297511 0.7297511 0.08111053 

 1.5 1.5 2.884669 0.7645335 1.923084 0.5459775 

MMLM 1 2 0.9959269 2.965069 0.03265827 537.9536 

 2 1 2.050816 1.334634 0.5815614 75.24864 

 1.5 1.5 1.509755 1.938258 0.1358153 32.50174 

P.E 1 2 0.9885461 2.173664 0.003262685 0.3074944 

 2 1 1.958414 1.086032 0.05149091 0.07893016 

 1.5 1.5 1.473992 1.639258 0.01313542 0.1854989 

M.P.E 1 2 0.9900613 2.311168 0.01792263 0.7873923 

 2 1 1.998593 1.147792 0.3185264 0.1839935 

 1.5 1.5 1.486727 1.732373 0.07012046 0.4244317 

Table 4. Estimates for the parameters of RPFD with different estimation methods under 

the sample size 100 and    . 

Methods True Values Estimated Values M.S.E 

                 

MLM 1 2 2.912034 0.6382958 3.658023 1.854838 

 2 1 2.980348 0.7178598 0.9614713 0.08242887 

 1.5 1.5 2.9371 0.7496401 2.067051 0.5648177 

MMLM 1 2 0.9977133 2.197954 0.01377068 0.5290005 

 2 1 2.023109 1.096638 0.2262647 0.1675765 

 1.5 1.5 1.501211 1.648838 0.054733 0.3114004 

P.E 1 2 0.9946443 2.075874 0.001316138 0.1044555 

 2 1 1.979712 1.039048 0.02069052 0.02699896 

 1.5 1.5 1.490577 1.55466 0.005306528 0.05965253 

M.P.E 1 2 0.9953407 2.123411 0.007335557 0.2220309 

 2 1 2.004361 1.055047 0.1219972 0.05295546 

 1.5 1.5 1.495992 1.582559 0.02916469 0.1177344 

4. Application examples 

We have taken two different situations from real life and showed the performance of our 

proposed probability distribution over other already existing probability distributions. The 

comparison of the probability distributions has been made in both data sets on the basis of Akaike 

information criterion (AIC), the correct Akaike information criterion (CAIC), Bayesian information 

criterion (BIC) and Hannan-Quinn information criterion (HQIC). 

Finally, using the above mentioned criteria’s, we have showed that the proposed RPFD perform 

better in both data as compared to different competitor models.  
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4.1. Acute Myelogenous Data 

Feigl and Zelen [42] analyzed the survival times (in weeks), of 33 patients suffering from a 

disease named as Acute Myelogenous Leukaemia. The survival time (in weeks) is given as; 65,156, 

100, 134, 16, 108, 121, 4, 39, 143, 56, 26, 22, 1, 1, 5, 65, 56, 65, 17, 7, 16, 22, 3, 4, 2, 3, 8, 4, 3, 30, 

4, 43. We have compared our proposed distribution with Beta Modified Weibull (BMW) by Silva et 

al. [10], Exponentiated Generalized Modified Weibull (EGMW) by Aryal and Elbatal [19], Weibull 

Power function (WPF) by Tahir et al. [31], Transmuated Power Function Distribution (TPFD) by 

Shahzad and Asghar [32], Exponentiated Weibull Power Function Distribution (EWPFD) by Hassan 

and Assar [33], Kumaraswamy Power function distribution (KPFD) by Ibrahim [34], and Power 

function distribution (PFD). 

The TTT-plot is displayed in Figure 5, which indicates that the HRF associated with the data set 

has a decreasing shape, since the plot shows a first convex curvature. So, we can easily fit RPFD on 

the Acute Myelogenous Data. 

 

Figure 5. TTT Plot for Acute Myelogenous Data. 

From Table 5 and Figure 6, it is clear that the proposed model RPFD is showing better results as 

compare to the other competitive models by providing smallest AIC, BIC, CAIC and HQIC for the 

given data. 

Table 5. Statistics for Acute Myelogenous Data. 

Models AIC BIC CAIC HQIC 

RPFD 304.367 305.8328 304.5004 304.852 

EWPFD 305.852 313.335 308.074 308.374 

WPF 307.804 313.79 309.232 309.818 

EGMW 317.303 324.786 319.525 318.821 

BMW 318.967 326.449 321.189 321.484 

KPFD 329.734 335.72 331.162 331.748 

TPFD 335.131 339.62 335.959 336.642 

PFD 965.418 968.411 965.818 966.425 
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Figure 6. Estimated PDF and CDF curves for Acute Myelogenous Data. 

4.2. Bladder cancer patients data 

We have adopted the data set consisting the remission time of 128 bladder cancer patients to 

demonstrate the performance of our proposed Reflected power function distribution. These data were 

also studied by Zea et al. [14], Lee and Wang [43]. The remission times in months are given: 0.08, 

0.20, 0.40, 0.50, 0.51, 0.81, 0.90, 1.05, 1.19, 1.26, 1.35, 1.40, 1.46, 1.76, 2.02, 2.02, 2.07, 2.09, 2.23, 

2.26, 2.46, 2.54, 2.62, 2.64, 2.69, 2.69, 2.75, 2.83, 2.87, 3.02, 3.25, 3.31, 3.36, 3.36, 3.48, 3.52, 3.57, 

3.64, 3.70, 3.82, 3.88, 4.18, 4.23, 4.26, 4.33, 4.34, 4.40, 4.50, 4.51, 4.87, 4.98, 5.06, 5.09, 5.17, 5.32, 

5.32, 5.34, 5.41, 5.41, 5.49, 5.62, 5.71, 5.85, 6.25, 6.54, 6.76, 6.93, 6.94, 6.97, 7.09, 7.26, 7.28, 7.32, 

7.39, 7.59, 7.62, 7.63, 7.66, 7.87, 7.93, 8.26, 8.37, 8.53, 8.65, 8.66, 9.02, 9.22, 9.47, 9.74, 10.06, 

10.34, 10.66, 10.75, 11.25, 11.64, 11.79, 11.98, 12.02, 12.03, 12.07, 12.63, 13.11, 13.29, 13.80, 14.24, 

14.76, 14.77, 14.83, 15.96, 16.62, 17.12, 17.14, 17.36, 18.10, 19.13, 20.28, 21.73, 22.69, 23.63, 

25.74, 25.82, 26.31, 32.15, 34.26, 36.66, 43.01, 46.12 ,79.05. 

We have compared our proposed Reflected power function distribution with the Beta 

Exponentiated Pareto distribution (BEPD) by Zea et al. [14], Marshall-Olkin Power Lomax 

Distribution (MOPLx) by Haq et al. [30] Kumaraswamy Power function distribution (KPFD) by 

Ibrahim [34], McDonald`s Power function distribution (McPFD) by Haq et al. [36], and Power 

function distribution (PFD). 

The TTT-plot of the remission time(in months) for bladder cancer patients is exhibited in 

Figure 7, we may see that the Hazard rate function has little bit bathtub shape, So, we may easily fit 

RPFD on the bladder cancer data. 



5048 

AIMS Mathematics  Volume 5, Issue 5, 5031–5054. 

 

Figure 7. TTT Plot for Bladder Cancer Data. 

From Table 6 and Figure 8, we see that the RPFD provides better fit for the above data set as it 

provides minimum AIC, BIC, CAIC, HQIC. 

Table 6. Statistics For Bladder Cancer Data. 

Models AIC BIC CAIC HQIC 

RPFD 810.3251 813.1693 810.3571 811.4807 

McPFD 811.5785 821.9553 811.9064 816.2008 

KPFD 814.0711 822.6037 814.2662 817.5378 

MOPLx 827.075 832.483 825.5162 847.3287 

BEPD 826.1318 837.5085 826.4596 830.7540 

PFD 942.4546 945.2988 942.4866 943.6102 

 

Figure 8. Estimated PDF and CDF curves for Bladder Cancer Data. 
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5. Conclusions 

We propose and study the different properties of RPFD. This distribution has applications in 

many fields such as reliability, economics, actuaries and survival analysis. We study the several 

properties of the distribution as moments, survival function, hazard function, inverse moments, 

shanon entropy, conditional moments, Lorenz curve, incomplete moments and order statistics. We 

have also characterized the distribution by conditional moments (Right and Left Truncated mean) 

and doubly truncated mean (DTM). Different estimation methods have been used to estimate the 

parameters of RPFD including MLM, MMLM, P.E and M.P.E. We have used two real life data sets 

in order to show the performance of the proposed model over the already available probability 

models. It is hoped that the findings of this paper will be useful for researchers in different field of 

applied sciences. 

Appendix 

A. Simulation Code for MLM 

phh=c();pll=c();vhat=c(); dsv=c();bhat=c();dsbhat=c() 

n=40 #sample size 

for(i in 1:5000){ 

r<-runif(n) 

b<-1.5 #scale parameter 

v<-1.5 #shape parameter 

theta<-3 #reflecting parameter 

x<-theta-(b*((1-r)^(1/v))) 

vhat[i]<-(n/((n*(log(max(x))))-(sum(log(theta-x))))) 

dsv[i]<-((vhat[i]-v)^2) 

bhat[i]<-max(x) 

dsbhat[i]<-((bhat[i]-b)^2) 

} 

estv<-mean(vhat) 

estb<-mean(bhat) 

msev<-mean(dsv) 

mseb<-mean(dsbhat) 

B. Simulation Code for MMLM 

phh=c();pll=c();vhat=c(); dsv=c();bhat=c();dsbhat=c() 

n=40 #sample size 

for(i in 1:5000){ 

r<-runif(n) 

b<-1.5 #scale parameter 

v<-1.5 #shape parameter 

theta<-3 #reflecting parameter 
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x<-theta-(b*((1-r)^(1/v))) 

vhat[i]<-(n*(1+log(0.5)))/((n*(log(theta-median(x))))-sum(log(theta-x))) 

dsv[i]<-((vhat[i]-v)^2) 

bhat[i]<-(theta-median(x))/(0.5^(1/(vhat[i]))) 

dsbhat[i]<-((bhat[i]-b)^2) 

} 

estb<-mean(bhat) 

estv<-mean(vhat) 

msev<-mean(dsv) 

mseb<-mean(dsbhat) 

C. Simulation Code for P.E 

phh=c();pll=c();vhat=c(); dsv=c(); bhat=c(); dsb=c() 

n=40 #sample size 

h<-0.75 #maximum percentage 

l<-0.25 #minimum percentage 

for(i in 1:5000){ 

r<-runif(n) 

b<-1.5 # scale parameter 

v<-1.5 # shape parameter 

theta<-3 #reflecting parameter 

x<-theta-(b*((1-r)^(1/v))) 

phh[i]<-(quantile(x)[4]) 

pll[i]<-(quantile(x)[2]) 

vhat[i]<-((log((1-h)/(1-l)))/(log((theta-phh[i])/(theta-pll[i])))) 

dsv[i]<-((vhat[i]-v)^2) 

bhat[i]<-(theta-(phh[i]))/((1-h)^(1/((vhat[i])))) 

dsb[i]<-((bhat[i]-b)^2) 

} 

estv<-mean(vhat) 

msev<-mean(dsv) 

estb<-mean(bhat) 

mseb<-mean(dsb) 

D. Simulation Code for M.P.E 

phh=c();pll=c();vhat=c(); dsv=c(); bhat=c(); dsb=c() 

n=40 #sample size 

h<-0.75 #maximum percentage 

l<-0.25 #minimum percentage 

for(i in 1:5000){ 

r<-runif(n) 
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b<-1.5 #scale parameter 

v<-1.5 #shape parameter 

theta<-3 #reflecting parameter 

x<-theta-(b*((1-r)^(1/v))) 

phh[i]<-(quantile(x)[4]) 

pll[i]<-(quantile(x)[2]) 

vhat[i]<-((log((0.5)/(1-h)))/(log((theta-median(x))/(theta-phh[i])))) 

dsv[i]<-((vhat[i]-v)^2) 

bhat[i]<-(theta-(median(x)))/((0.5)^(1/((vhat[i])))) 

dsb[i]<-((bhat[i]-b)^2) 

} 

estv<-mean(vhat) 

msev<-mean(dsv) 

estb<-mean(bhat) 

mseb<-mean(dsb) 

E. Simulation Code for Application 

Acute Myelogenous Data<-c(65, 100, 134, 16, 108, 121, 4, 39, 143, 

56, 26, 22, 1, 1, 5, 65, 56, 65, 17, 7, 16, 22, 3, 4,  

2, 3, 8, 4, 3, 30, 4, 43) 

PDF_RPFD<- function(par,x){ 

v<-par[1] #shape parameter 

theta<-156 #reflecting parameter 

b<-156 # scale parameter 

(theta - x)^(v - 1) * v/(b^v) 

} 

CDF_RPFD<- function(par,x){ 

v<-par[1] 

theta<-156 

b<-156 

(1-(((theta-x)^v)/(b^v))) 

} 

goodness.fit(pdf=PDF_RPFD, cdf=CDF_RPFD, 

starts = c(1), data=Acute Myelogenous Data, 

method="CG", domain=c(0,156),mle=NULL) 
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