Research article

Gould-Hopper matrix-Bessel and Gould-Hopper matrix-Tricomi functions and related integral representations

  • Received: 07 February 2020 Accepted: 12 May 2020 Published: 25 May 2020
  • MSC : 26A33, 33B10, 33C45

  • The paper performs an investigation on the new class of functions, namely the GouldHopper-Bessel matrix functions and Gould-Hopper-Tricomi matrix functions via operational methods. The generating functions, operational representations and connection formulae are established. The generalized forms of the Gould-Hopper-Bessel matrix and Gould-Hopper-Tricomi matrix functions are introduced using integral transform. Several important properties related to these functions are also deduced.

    Citation: Ruma Qamar, Tabinda Nahid, Mumtaz Riyasat, Naresh Kumar, Anish Khan. Gould-Hopper matrix-Bessel and Gould-Hopper matrix-Tricomi functions and related integral representations[J]. AIMS Mathematics, 2020, 5(5): 4613-4623. doi: 10.3934/math.2020296

    Related Papers:

  • The paper performs an investigation on the new class of functions, namely the GouldHopper-Bessel matrix functions and Gould-Hopper-Tricomi matrix functions via operational methods. The generating functions, operational representations and connection formulae are established. The generalized forms of the Gould-Hopper-Bessel matrix and Gould-Hopper-Tricomi matrix functions are introduced using integral transform. Several important properties related to these functions are also deduced.


    加载中


    [1] M. Ali, T. Nahid, S. Khan, Some results on hybrid relatives of the Sheffer polynomials via operational rules, Miskolc Math. Notes, 20 (2019), 729-743.
    [2] B. Çekim, R. Aktaş, Multivariable matrix generalization of Gould-Hopper polynomials, Miskolc Math. Notes, 16 (2015), 79-89. doi: 10.18514/MMN.2015.1112
    [3] G. Dattoli, Hermite-Bessel and Laguerre-Bessel functions: A by-product of the monomiality principle, 1999.
    [4] G. Dattoli, Generalized polynomials, operational identities and their applications, J. Comput. Appl. Math., 118 (2000), 111-123. doi: 10.1016/S0377-0427(00)00283-1
    [5] G. Dattoli, P. L. Ottaviani, A. Torre, et al. Evolution operator equations: Integration with algebraic and finite-difference methods. Applications to physical problems in classical and quantum mechanics and quantum field theory, Riv. Nuovo Cim., 20 (1997), 1-133.
    [6] G. Dattoli, P. E. Ricci, C. Cesarano, et al. Special polynomials and fractional calculus, Math. Comput. Model., 37 (2003), 729-733. doi: 10.1016/S0895-7177(03)00080-3
    [7] E. Defez, L. Jodar, Some applications of the Hermite matrix polynomials series expansions, J. Comput. Appl. Math., 99 (1998), 105-117. doi: 10.1016/S0377-0427(98)00149-6
    [8] A. J. Durán, Markovs theorem for orthogonal matrix polynomials, Can. J. Math., 48 (1996), 1180-1195. doi: 10.4153/CJM-1996-062-4
    [9] A. J. Durán, W. Van Assche, Orthogonal matrix polynomials and higher order recurrence relations, Linear Algebra Appl., 219 (1995), 261-280. doi: 10.1016/0024-3795(93)00218-O
    [10] J. S. Geronimo, Matrix orthogonal polynomials in the unit circle, J. Math. Phys., 22 (1981), 1359-1365. doi: 10.1063/1.525073
    [11] J. S. Geronimo, Scattering theory and matrix orthogonal polynomials on the real line, Circ. Syst. Signal Pr., 1 (1982), 471-495. doi: 10.1007/BF01599024
    [12] W. Groenevelt, E. Koelink, A hypergeometric function transform and matrix valued orthogonal polynomials, Constr. Approx., 38 (2013), 277-309. doi: 10.1007/s00365-013-9207-1
    [13] L. Jódar, R. Company, Hermite matrix polynomials and second order matrix differential equations, Approximation Theory and its Applications, 12 (1996), 20-30.
    [14] L. Jódar, R. Company, E. Navarro, Laguerre matrix polynomials and systems of second order differential equations, Appl. Numer. Math., 15 (1994), 53-63. doi: 10.1016/0168-9274(94)00012-3
    [15] L. Jódar, R. Company, E. Ponsoda, Orthogonal matrix polynomials and systems of second order differential equations, Diff. Equ. Dynam. Syst., 3(3) (1995), 269-288.
    [16] E. D. Rainville, Special functions, Bronx, New York, 1971.
    [17] H. M. Srivastava, H. L. Manocha, A Treatise on Generating Functions, 1984.
    [18] J. F. Steffensen, The poweriod, an extension of the mathematical notion of power, Acta Math., 73 (1941), 333-366. doi: 10.1007/BF02392231
    [19] G. N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press, Cambridge, 1966.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3262) PDF downloads(250) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog