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1. Introduction

The theory of special functions performs an essential role in the formalism of mathematical physics.
The Bessel functions [16] are one of the most important special functions and have applications in
number theory, lie theory and theoretical astronomy to some problems of engineering and physics.
The Bessel functions Jn(x) are specified by means of the following generating equation [16]:

exp
(

x
2

(
t −

1
t

))
=

∞∑
n=−∞

Jn(x)tn, t , 0; |x| < ∞ (1.1)
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and have the following series form:

Jn(x) =

∞∑
k=0

(−1)k
(

x
2

)n+2k

k! Γ(1 + n + k)
, |x| < ∞, (1.2)

where n is a positive integer or zero.
The Tricomi functions are another important special function due to their intrinsic mathematical

importance in numerous branches of applied mathematics and mathematical physics and possess the
following series form:

Cn(x) =

∞∑
k=0

(−1)k xk

k! (n + k)!
. (1.3)

The Tricomi function Cn(x) are linked to the Bessel function Jn(x) [16] as:

Cn(x) = x−n/2Jn(2
√

x), (1.4)

or

Jn(x) =

( x
2

)n
Cn

(
x2

4

)
(1.5)

and possess the following generating equation:

exp
(
t −

x
t

)
=

∞∑
n=−∞

Cn(x)tn. (1.6)

In last few decades, an increasing interest in the area of matrix special polynomials have been
noticed and many fascinating results established for classical orthogonal polynomials have been
extended to orthogonal matrix special polynomials [9, 10]. The introduction of the Gould-Hopper
matrix polynomials (GHMaP) gm

n (x, y; A, B) is very much captivating because of their intrinsic
mathematical importance. The GHMaP gm

n (x, y; A, B) possess the following generating function [2]:

∞∑
n=0

gm
n (x, y; A, B)

tn

n!
= exp(xt

√
2A) exp(Bytm), (1.7)

where A, B are matrices in CN×N , such that A is positive stable and m is a positive integer and specified
by the following series expansion:

gm
n (x, y; A, B) =

[ n
m ]∑

k=0

n! (
√

2A)n−mkBk

(n − mk)! k!
xn−mkyk. (1.8)

The special matrix polynomials are very essential as they turn out in matrix expansion problems,
representation and prediction theory and in the matrix quadrature integration problems, see for
instance [7, 8, 13]. The matrix polynomials have connection and applications in spectral analysis [12]
and scattering theory [11].
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Doing some calculations, we find that GHMaP gm
n (x, y; A, B) are quasi-monomial [3, 4, 18] under

the action of the following multiplicative and derivative operators:

M̂g = x
√

2A + mBy(
√

2A)−(m−1) ∂
m−1

∂xm−1 (1.9)

and
P̂g = (

√
2A)−1D̂x, (1.10)

respectively.
Many enthralling results for special polynomials must be determined in view of operational rules

related to the appropriate multiplicative and derivative operators. The principle of quasi-monomiality
are exploited to investigate the properties of new families of special polynomials [1]. A family of
hybrid polynomials reveals a nature lying between two polynomials families which are constructed by
means of appropriate operational rules.

Due to significance of the two variable forms of special matrix polynomials in various fields of
mathematics and engineering, here in this article, we introduce certain mixed type special matrix
functions. In Section 2, the Gould-Hopper matrix polynomials combined with the Bessel functions
and Tricomi functions respectively, to construct the new class of hybrid matrix functions. The
generating functions and operational representations for the Gould-Hopper-Bessel matrix functions
and Gould-Hopper-Tricomi matrix functions are established. In Section 3, the generalized forms of
the Gould-Hopper-Bessel matrix functions and Gould-Hopper-Tricomi matrix functions are derived
via integral transforms and operational rule.

2. Gould-Hopper-Bessel matrix and Gould-Hopper-Tricomi matrix functions

First, the generating function of the Gould-Hopper-Bessel matrix functions (GHBMaF)
gJm

n (x, y; A, B) is obtained by proving the following result:

Theorem 2.1. For the Gould-Hopper-Bessel matrix functions gJm
n (x, y; A, B), the following generating

function holds true:

exp
 x
√

2A
2

(
t −

1
t

)
+

By
2m

(
t −

1
t

)m =

∞∑
n=−∞

gJm
n (x, y; A, B) tn. (2.1)

Proof. Replacing x by multiplicative operator M̂g of the Gould-Hopper matrix polynomials
gm

n (x, y; A, B) in Eq (1.1) and denoting the resultant Gould-Hopper-Bessel matrix functions in the r.h.s
by gJm

n (x, y; A, B), it follows that

exp
 M̂g

2

(
t −

1
t

) =

∞∑
n=−∞

gJm
n (x, y; A, B) tn.

exp
((

x
√

2A + mBy
(√

2A
)−(m−1) ∂m−1

∂xm−1

)
1
2

(
t −

1
t

))
=

∞∑
n=−∞

gJm
n (x, y; A, B) tn. (2.2)
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Using Crofton-type identity [5, p. 12]:

f
(
x + mλ

dm−1

dxm−1

)
{1} = exp

(
λ

dm

dxm

){
f (x)

}
, (2.3)

in the l.h.s. of Eq (2.2), we get

exp
(
By

(√
2A

)−m ∂m

∂xm

)
exp

 x
√

2A
2

(
t −

1
t

) =

∞∑
n=−∞

gJm
n (x, y; A, B) tn,

which on simplification yields assertion (2.1).

Remark 2.1. Taking y = 0 in generating Eq (2.1), we get

gJm
n (x, 0; A, B) = Jn(x

√
2A), (2.4)

which on taking A = 1
2 I reduces to the Bessel function Jn(x).

Remark 2.2. On differentiating generating function (2.1) with respect to x, the following differential
recurrence relation for Gould-Hopper-Bessel matrix functions gJm

n (x, y; A, B) holds true:

2
∂

∂x gJm
n (x, y; A, B) =

√
2A

(
gJm

n−1(x, y; A, B) − gJm
n+1(x, y; A, B)

)
. (2.5)

The operational representation for the GHBMaF gJm
n (x, y; A, B) is obtained in the following theorem:

Theorem 2.2. The following operational representation for the Gould-Hopper-Bessel matrix functions
gJm

n (x, y; A, B) holds true:

gJm
n (x, y; A, B) = exp

(
yB

(√
2A

)−m ∂m

∂xm

)
Jn

(
x
√

2A
)
. (2.6)

Proof. In view of generating relation (2.1), we can write

∂m

∂xm

(√
2A

)−m
B gJm

n (x, y; A, B) =
∂

∂y gJm
n (x, y; A, B). (2.7)

Solving Eq (2.7) along with initial condition (2.4), assertion (2.6) is proved.

Lemma 2.3. The following connection formulae for the Gould-Hopper-Bessel matrix functions
gJm

n (x, y; A, B) hold true:

gJm
n (x1 + x2, y; A, B) =

∞∑
l=−∞

gJm
n−l(x1, y; A, B) Jl(x2

√
2A) (2.8)

gJm
n (x1 − x2, y; A, B) =

∞∑
l=−∞

(−1)l
gJm

n−l(x1, y; A, B) Jl(x2

√
2A) (2.9)

gJm
n (x1 + x2, y1 + y2; A, B) =

∞∑
l=−∞

gJm
n−l(x1, y1; A, B) gJm

l (x2, y2; A, B). (2.10)

AIMS Mathematics Volume 5, Issue 5, 4613–4623.



4617

Proof. Replacing x by x1 + x2 in generating Eq (2.1), it follows that

exp
 x1
√

2A
2

(
t −

1
t

)
+

By
2m

(
t −

1
t

)m exp
 x2
√

2A
2

(
t −

1
t

)
=

∞∑
n=−∞

gJm
n (x1 + x2, y; A, B) tn,

(2.11)

which on making use of Eqs (1.1) and (2.1) and comparison of coefficients of same powers of t in both
sides of the obtained relation gives assertion (2.8).

Next, replacing x by x1 − x2 in generating Eq (2.1) and proceeding same as above, assertion (2.9)
follows. Again, replacing x by x1 + x2 and y by y1 + y2 in generating Eq (2.1) and proceeding same as
above, assertion (2.10) is proved.

Remark 2.3. Taking t = exp(iφ) in generating Eq (2.1), the following Jacobi-Anger type expansion of
the GHBMaF gJm

n (x, y; A, B) is obtained:

exp
(
x
√

2A(i sin φ) + By(i sin φ)m
)

=

∞∑
n=−∞

gJm
n (x1 + x2, y; A, B) exp(inφ), (2.12)

which can takes the form

cosα + i sinα =

∞∑
n=−∞

gJm
n (x1 + x2, y; A, B) exp(inφ), (2.13)

where α = x
√

2A sin φ + Byim−1 sinm φ. Also, we have

cosα =

∞∑
n=−∞

gJm
n (x, y; A, B)(cos nφ), (2.14)

sinα =

∞∑
n=−∞

gJm
n (x, y; A, B)(sin nφ). (2.15)

The Jacobi-Anger expansion is useful in physics (in conversion of plane waves and the cylindrical
waves) and in signal processing (to describe frequency modulation signals).

Next, the generating function of the GHTMaF gCm
n (x, y; A, B) is obtained by proving the following

result:

Theorem 2.4. The Gould-Hopper-Tricomi matrix functions gCm
n (x, y; A, B) are specified by the

following generating function:

exp
t − x

√
2A

t
+

By
(−t)m

 =

∞∑
n=−∞

gCm
n (x, y; A, B) tn. (2.16)

Proof. Replacing x by multiplicative operator M̂g of the Gould-Hopper matrix polynomials
gm

n (x, y; A, B) in generating relation (1.6) and denoting the resultant GHTMaF in the r.h.s by
gCm

n (x, y; A, B), it follows that

exp
t − M̂g

t

 =

∞∑
n=−∞

gCm
n (x, y; A, B) tn.
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exp
(
t −

(
x
√

2A + mBy
(√

2A
)−(m−1) ∂m−1

∂xm−1

)
1

(−t)

)
=

∞∑
n=−∞

gCm
n (x, y; A, B) tn, (2.17)

which on using the Crofton-type identity proves assertion (2.16).

Remark 2.4. Taking y = 0 in generating Eq (2.16), we get

gCm
n (x, 0; A, B) = Cn(x

√
2A), (2.18)

which on taking A = 1
2 I reduces to the Tricomi function Cn(x).

The series representation for the GHTMaF gCm
n (x, y; A, B) is obtained by proving the following

result:

Theorem 2.5. For the Gould-Hopper-Tricomi matrix functions gCm
n (x, y; A, B), the following series

expansion holds true:

gCm
n (x, y; A, B) =

∞∑
k=0

[ k
m ]∑

l=0

(
x
√

2A
)k−ml

(By)l(−1)k

(k − ml)! l! (n + k)!
. (2.19)

Proof. Using Eq (1.7) in generating relation (2.16), we find ∞∑
n=0

tn

n!

  ∞∑
k=0

gm
k (x, y; A, B)

1
(−t)k k!

 =

∞∑
n=−∞

gCm
n (x, y; A, B)tn.

Comparing the coefficients of identical powers of t and on using relation (1.8), we get assertion
(2.19).

The operational representations for the GHTMaF gCm
n (x, y; A, B) are obtained by proving the

following results:

Theorem 2.6. For the Gould-Hopper-Tricomi matrix functions gCm
n (x, y; A, B), the following

operational representation holds true:

gCm
n (x, y; A, B) = exp

(
yB

(√
2A

)−m ∂m

∂xm

)
Cn

(
x
√

2A
)
. (2.20)

Proof. Differentiating generating relation (2.16) w.r.t. x and y respectively, we find

∂m

∂xm

(√
2A

)−m
B gCm

n (x, y; A, B) =
∂

∂y gCm
n (x, y; A, B). (2.21)

Solving Eq (2.21) along with initial condition (2.18), assertion (2.20) follows.
An immediate consequence of Theorem 2.6 is given in the form of the following result:

Corollary 2.1. The following operational representation between two forms of the Gould-Hopper-
Tricomi matrix functions gCm

n (x, y; A, B) holds true:

gCm
n (x, y + z; A, B) = exp

(
zB

(√
2A

)−m ∂m

∂xm

)
gCm

n (x, y; A, B). (2.22)
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Lemma 2.7. The Gould-Hopper-Tricomi matrix functions gCm
n (x, y; A, B) satisfies the following

recurrence relation:

gCm
n+1(x, y; A, B) =

1
n + 1

(
gCm

n (x, y; A, B) + x
√

2A gCm
n+2(x, y; A, B)

−mBy gCm
n+m−1(x, y; A, B)

)
.

(2.23)

Proof. Differentiating generating relation (2.16) w.r.t. t and equating the coefficients of same powers
of t in both sides, we get assertion (2.23).

In the next section, generalized form of the GHBMaF gJm
n (x, y; A, B) and GHTMaF gCm

n (x, y; A, B)
are introduced by making use of integral transform and their properties are established.

3. Integral representations of Gould-Hopper-Bessel matrix functions and Gould-Hopper-
Tricomi matrix functions

In recent years, the generalized and many-variable special functions have witnessed a significant
evolution. These functions are proved to be very significant in purely mathematical and applied
frameworks. The combined use of integral transforms and special polynomials imparts a powerful
technique to deal with fractional derivatives, see for example [1, 6]. To detect the operational rule and
generating relations for the generalized form of special polynomials, Dattoli and co-authors used the
Euler’s integral in [6]. The Euler’s integral is given by [17, p.218]:

a−ν =
1

Γ(ν)

∫ ∞

0
tν−1e−atdt, min{Re(ν),Re(a)} ≥ 0, (3.1)

which consequently yields the following [6]:(
α −

∂

∂x

)−ν
f (x) =

1
Γ(ν)

∫ ∞

0
tν−1e−αt f (x + t)dt. (3.2)

In order to introduce the generalized form of the GHBMaF gJm
n (x, y; A, B), we give the following

definition:

Definition 3.1. The following operational rule for the generalized Gould-Hopper-Bessel matrix
functions gJm

n,ν(x, y; A, B;α) holds true:(
α − yB

(√
2A

)−m ∂m

∂xm

)−ν
Jn(x
√

2A) = gJm
n,ν(x, y; A, B;α). (3.3)

Theorem 3.1. The following integral representation for the generalized Gould-Hopper-Bessel matrix
functions gJm

n,ν(x, y; A, B;α) holds true:

gJm
n,ν(x, y; A, B;α) =

1
Γ(ν)

∫ ∞

0
e−αttν−1

gJm
n (x, yt; A, B)dt. (3.4)
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Proof. Replacing a by
(
α − yB

(√
2A

)−m
∂m

∂xm

)
in relation (3.1) and then operating the resultant equation

on Jn(x
√

2A), it follows that(
α − yB

(√
2A

)−m ∂m

∂xm

)−ν
Jn(x
√

2A)

=
1

Γ(ν)

∫ ∞

0
e−αttν−1 exp

(
yBt

(√
2A

)−m ∂m

∂xm

)
Jn(x
√

2A)dt,
(3.5)

which on using Eq (2.6) gives(
α − yB

(√
2A

)−m ∂m

∂xm

)−ν
Jn(x
√

2A) =
1

Γ(ν)

∫ ∞

0
e−αttν−1

gJm
n (x, yt; A, B)dt. (3.6)

Indicating the transform on the r.h.s of Eq (3.6) by a new class of the generalized Gould-Hopper-
Bessel matrix functions (gGHBMaF), denoted by gJm

n,ν(x, y; A, B;α), we are led to assertion (3.4).
Next, the generating function of the gGHBMaF gJm

n,ν(x, y; A, B;α) is obtained by proving the
following theorem:

Theorem 3.2. The following generating function for the generalized Gould-Hopper-Bessel matrix
functions gJm

n,ν(x, y; A, B;α) holds true:

exp
(
x
√

2A
(
u − 1

u

))
(
α − By

2m

(
u − 1

u

)m)ν =

∞∑
n=−∞

gJm
n,ν(x, y; A, B;α)un. (3.7)

Proof. Multiplying both sides of Eq (3.4) by un and summing over n, we find

∞∑
n=−∞

gJm
n,ν(x, y; A, B;α)un =

∞∑
n=−∞

1
Γ(ν)

∫ ∞

0
e−αttν−1

gJm
n (x, yt; A, B)undt, (3.8)

which on using Eq (2.1) in the r.h.s. gives

∞∑
n=−∞

gJm
n,ν(x, y; A, B;α)un =

exp
(

x
√

2A
2

(
u − 1

u

))
Γ(ν)

∫ ∞

0
exp

(
Byt
2m

(
u −

1
u

))
e−αttν−1dt. (3.9)

Using Eq (3.1) in the r.h.s. of above equation, we get assertion (3.7).
Differentiating generating function (3.7) w.r.t. α and x respectively, the following matrix recurrence

relations for the generalized Gould-Hopper-Bessel matrix functions gJm
n,ν(x, y; A, B;α) are obtained:

∂

∂α
gJm

n,ν(x, y; A, B;α) = −ν gJm
n,ν+1(x, y; A, B;α) (3.10)

and
2
∂

∂x gJm
n,ν(x, y; A, B;α) =

√
2A

(
gJm

n−1,ν(x, y; A, B;α) − gJm
n+1,ν(x, y; A, B;α)

)
. (3.11)

Remark 3.1. For α = 1, ν = 1 and y = D−1
y , the generalized Gould-Hopper-Bessel matrix functions

gJm
n,ν(x, y; A, B;α) reduce to the Gould-Hopper-Bessel matrix functions gJm

n (x, y; A, B).
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Next, the operational rule, generating function and recurrence relation for the gGHTMaF
gCm

n,ν(x, y; A, B;α) are obtained. First, we give the following definition:

Definition 3.2. The following operational rule for the generalized Gould-Hopper-Tricomi matrix
functions gCm

n,ν(x, y; A, B;α) holds:(
α − yB

(√
2A

)−m ∂m

∂xm

)−ν
Cn(x

√
2A) = gCm

n,ν(x, y; A, B;α). (3.12)

Theorem 3.3. The following integral representation for the generalized Gould-Hopper-Tricomi matrix
functions gCm

n,ν(x, y; A, B;α) holds:

gCm
n,ν(x, y; A, B;α) =

1
Γ(ν)

∫ ∞

0
e−αttν−1

gCm
n (x, yt; A, B)dt. (3.13)

Proof. Replacing a by
(
α − yB

(√
2A

)−m
∂m

∂xm

)
in relation (3.1) and then operating the resultant equation

on Cn(x
√

2A), it follows that(
α − yB

(√
2A

)−m ∂m

∂xm

)−ν
Cn(x

√
2A)

=
1

Γ(ν)

∫ ∞

0
e−αttν−1 exp

(
yBt

(√
2A

)−m ∂m

∂xm

)
Cn(x

√
2A)dt,

(3.14)

which on using Eq (2.20) gives(
α − yB

(√
2A

)−m ∂m

∂xm

)−ν
Cn(x

√
2A) =

1
Γ(ν)

∫ ∞

0
e−αttν−1

gCm
n (x, yt; A, B)dt. (3.15)

Indicating the transform on the r.h.s of Eq (3.15) by a new class of the generalized Gould-Hopper-
Tricomi matrix functions (gGHTMaF), denoted by gCm

n,ν(x, y; A, B;α), assertion (3.13) is proved.
Next, the generating function of the gGHTMaF gCm

n,ν(x, y; A, B;α) is obtained by proving the
following theorem:

Theorem 3.4. The following generating function for the generalized Gould-Hopper-Tricomi matrix
functions gCm

n,ν(x, y; A, B;α) holds:

exp
(
u − x

√
2A

u

)
(
α − By

(−u)m

)ν =

∞∑
n=−∞

gCm
n,ν(x, y; A, B;α)un. (3.16)

Proof. Multiplying both sides of Eq (3.13) by un and summing over n, we find
∞∑

n=−∞

gCm
n,ν(x, y; A, B;α)un =

∞∑
n=−∞

1
Γ(ν)

∫ ∞

0
e−αttν−1

gCm
n (x, yt; A, B)undt, (3.17)

which on using Eq (2.16) in the r.h.s. gives

∞∑
n=−∞

gCm
n,ν(x, y; A, B;α)un =

exp
(
u − x

√
2A

u

)
Γ(ν)

∫ ∞

0
exp

(
Byt

(−u)m

)
e−αttν−1dt. (3.18)

Using Eq (3.1) in the r.h.s. of Eq (3.18), we get assertion (3.16).
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Corollary 3.1. Differentiating generating function (3.16) w.r.t. α, the following differential recurrence
relation for the generalized Gould-Hopper-Tricomi matrix functions gCm

n,ν(x, y; A, B;α) holds true:

∂

∂α
gCm

n,ν(x, y; A, B;α) = −ν gCm
n,ν+1(x, y; A, B;α) (3.19)

Remark 3.2. For α = 1, ν = 1 and y = D−1
y , the generalized Gould-Hopper-Tricomi matrix functions

gCm
n,ν(x, y; A, B;α) reduce to the Gould-Hopper-Tricomi matrix functions gCm

n (x, y; A, B).

4. Conclusion

The mixed families of special matrix functions are introduced as discrete convolution of the known
special polynomials and these newly introduced polynomials possess the same properties as the parent
polynomials or functions. Therefore, the Gould-Hopper-Bessel matrix and Gould-Hopper-Tricomi
matrix functions have same properties as the Bessel and Tricomi functions.

It is known that the Bessel functions arise in astronomical and mechanical problems; the relevant
theory is formulated in a coherent and organic body, displaying the wealth of properties and the
connections with other special functions [19]. Several problems of chemistry, physics and mechanics
are related to the second order matrix differential equations and special matrix polynomials and
functions are basically the solutions of several matrix differential equations [13–15]. So, the mixed
type special matrix functions introduced in this article will perform an indispensable role in the
analysis of numerous problems of physics and engineering.

The significance and applications of mixed special polynomials in mathematical physics and
engineering provides motivation to investigate mixed type special matrix functions associated with
the Gould-Hopper matrix polynomials. The approach presented in this article is general and imparts a
powerful technique for examining the properties of the hybrid special matrix functions and can be
extended to establish the properties of other generalized families of special matrix functions.
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