Research article

$L$-biconvex sets on some fuzzy algebraic substructures

  • Received: 26 December 2019 Accepted: 23 April 2020 Published: 08 May 2020
  • MSC : 52A01, 54A40

  • With a complete residuated lattice $L$ as the set of truth values, we first introduce the concept of $L$-biconvex sets. Then we focus on investigating the forms of $L$-biconvex sets on three fuzzy algebraic substructures which are $L$-subsemilattices, $L$-sublattices and $L$-Boolean sublattices.

    Citation: Hui Yang, Yi Shi. $L$-biconvex sets on some fuzzy algebraic substructures[J]. AIMS Mathematics, 2020, 5(5): 4311-4321. doi: 10.3934/math.2020275

    Related Papers:

  • With a complete residuated lattice $L$ as the set of truth values, we first introduce the concept of $L$-biconvex sets. Then we focus on investigating the forms of $L$-biconvex sets on three fuzzy algebraic substructures which are $L$-subsemilattices, $L$-sublattices and $L$-Boolean sublattices.


    加载中


    [1] M. van de Vel, Theory of Convex Structures, North-Holland, Amsterdam, 1993.
    [2] M. V. Rosa, On fuzzy topology fuzzy convexity spaces and fuzzy local convexity, Fuzzy Sets Syst., 62 (1994), 97-100. doi: 10.1016/0165-0114(94)90076-0
    [3] Q. Jin, L. Q. Li, On the embedding of L-convex spaces in stratified L-convex spaces, SpringerPlus, 5 (2016), 1610.
    [4] B. Pang, F. G. Shi, Subcategories of the category of L-convex spaces, Fuzzy Sets Syst., 313 (2017), 61-74. doi: 10.1016/j.fss.2016.02.014
    [5] C. Shen, F. G. Shi, Characterizations of L-convex spaces via domain theory, Fuzzy Sets Syst., 380 (2020), 44-63. doi: 10.1016/j.fss.2019.02.009
    [6] B. Pang, F. G. Shi, Fuzzy counterparts of hull spaces and interval spaces in the framework of L-convex spaces, Fuzzy Sets Syst., 369 (2019), 20-39. doi: 10.1016/j.fss.2018.05.012
    [7] B. Pang, Z. Y. Xiu, An axiomatic approach to bases and subbases in L-convex spaces and their applications, Fuzzy Sets Syst., 369 (2019), 40-56. doi: 10.1016/j.fss.2018.08.002
    [8] F. G. Shi, Z. Y. Xiu, A new approach to the fuzzification of convex structures, J. Appl. Anal., 2014 (2014), 1-12.
    [9] F. G. Shi, Z. Y. Xiu, (L, M)-fuzzy convex structures, J. Nonlinear Sci. Appl., 10 (2017), 3655-3669. doi: 10.22436/jnsa.010.07.25
    [10] B. Pang, Hull operators and interval operators in the (L, M)-fuzzy convex spaces, Fuzzy Sets Syst., 2019, DOI: 10.1016/j.fss.2019.11.010.
    [11] B. Pang, Bases and subbases in (L, M)-fuzzy convex spaces, Comput. Appl. Math., 39 (2020), 41.
    [12] C. Y. Liang, F. H. Li, A degree approach to separation axioms in M-fuzzifying convex spaces, J. Intell. Fuzzy Syst., 36 (2019), 2885-2893. doi: 10.3233/JIFS-171361
    [13] C. Y. Liang, F. H. Li, J. Zhang, Separation axioms in (L, M)-fuzzy convex spaces, J. Intell. Fuzzy Syst., 36 (2019), 3649-3660. doi: 10.3233/JIFS-181772
    [14] Z. Y. Xiu, Q. H. Li, B. Pang, Fuzzy convergence structures in the framework of L-convex spaces, Iran. J. Fuzzy Syst., 2020, DOI:10.22111/IJFS.2020.5232.
    [15] D. W. Pei, The characterization of residuated lattices and regular residuated lattices, Acta Mathematica Sinica, 45 (2002), 271-278. (In Chinese)
    [16] Y. Maruyama, Lattice-valued fuzzy convex geometry, RIMS Kokyuroku, 1641 (2009), 22-37.
    [17] N. Ajmal, K. V. Thomas, Fuzzy lattice, Inform. Sci., 79 (1994), 271-291. doi: 10.1016/0020-0255(94)90124-4
    [18] Y. Zhong, F. G. Shi, Formulations of L-convex hulls on some algebraic structures, J. Intell. Fuzzy Syst., 33 (2017), 1-11. doi: 10.3233/JIFS-15982
    [19] J. Jiménez, S. Montes, B. Šešeljia, et al. On lattice valued upsets and down-sets, Fuzzy Sets Syst., 161 (2010), 1699-1710. doi: 10.1016/j.fss.2009.11.012
    [20] Y. Bo, W. W. Ming, Fuzzy ideals on a distributive lattice, Fuzzy Sets Syst., 35 (1990), 231-240. doi: 10.1016/0165-0114(90)90196-D
    [21] G. Birkhoff, Lattice Theory, American Mathematical Society, Providence RI, 1967.
    [22] B. A. Davey, H. A. Priestley, Introduction to Lattice and Order (2 Eds.), Cambridge: Cambridge University Press, 2002.
    [23] M. Bhowmik, T. Senapati, M. Pal, Intuitionistic L-fuzzy ideals of BG-algebras, Afr. Mat., 25 (2014), 577-590. doi: 10.1007/s13370-013-0139-5
    [24] C. Janab, M. Pal, T. Senapatia, et al. Atanassov0s Intuitionistic L-fuzzy G-subalgebras of Galgebras, J. Fuzzy Math., 23 (2015), 325-340.
    [25] J. Meng, Y. B. Jun, BCK-Algebras, Kyung Moon Sa Co., Seoul, Korea, 1994.
    [26] T. Senapatia, C. Janab, M. Bhowmikc, et al. L-fuzzy G-subalgebras of G-algebras, J. Egypt. Math. Soc., 23 (2015), 219-223. doi: 10.1016/j.joems.2014.05.010
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3174) PDF downloads(265) Cited by(1)

Article outline

Figures and Tables

Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog