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1. Introduction

Convexity plays a vital role in many mathematical structures, such as vector spaces, posets,
lattices, metric spaces, graphs and median algebras. Generalizing the classical theorems in Rn, Helly,
Caratheodory et al. abstracted an axiomatic convexity (also called a convex structure). A convex
structure [1] on a set X is defined to be a subset E of 2X which contains both the empty set ∅ and X
itself and which is closed under arbitrary intersections and directed unions. As a topology-like spatial
structure, convex structures have some similar characters with topologies, one kind of the important
spatial properties is separation axioms. With the development of fuzzy set theory, the notion of
convex structures has been extended to fuzzy case. The notion of fuzzy convex structures [2] was
introduced by Rosa in 1994. In recent years, the theory of fuzzy convex spaces become a popular
research direction. In what follows, we divide the existing discussions into two groups.
• In 2016, Jin and Li [3] investigated the relationships between convex spaces and stratified L-

convex spaces from a categorical viewpoint. Later, Pang and Shi [4] introduced several types of L-
convex spaces and investigated their categorical relationships. Afterwards, Shen and Shi [5] provided
some new characterizations of L-convex spaces by using the way-below relation in domain theory.
Pang et al. [6, 7] proposed fuzzy counterparts of hull operators, interval operators, bases and subbases,
which provided some basic tools for the research of L-convex structures.
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• From a completely different direction, Shi and Xiu [8] provided a new approach to fuzzification of
convex spaces, i.e., M-fuzzifying convex structures. In this situation, each subset of X can be regarded
as a convex set to some degree. Furthermore, Shi and Xiu [9] proposed the notion of (L,M)-fuzzy
convex spaces, which contains L-convex spaces and M-fuzzifying convex spaces as special cases.
Further, Pang [10, 11] introduced (L,M)-fuzzy hull operators, (L,M)-fuzzy bases and (L,M)-fuzzy
subbases to characterize (L,M)-fuzzy convex structures.

As we all know, the notion of biconvex sets (half-spaces, hemispaces) was proposed via a general,
non-technical way [1]. The existence of sufficiently many of them in a convex structure is required in
a series of of high-lever separation axioms (i.e., S 3, S 4). Also, it can be used to handle many
examples and constructions, such as semilattices, lattices, cones, and so on. When applied to lattices,
the separation and hull properties are equivalent and characterize distributivity. Furthermore, the S 0,
S 1, S 2 separation axioms in convex spaces have been already extend to the fuzzy case [12, 13].
However, they did not investigate the biconvex sets. Recently, Xiu et al. [14] introduced the concept
of L-convergence structures in L-convex spaces, which will provide a new tool for interpreting
separation properties in convex spaces. Inspired by above, we are interested in the fuzzy counterpart
of biconvex sets on some concrete algebraic structures in the framework of L-convex spaces. For this
reason, we will first generalize the notion of biconvex sets intuitively to L-biconvex sets and give an
essential property of L-biconvex sets, which can be used in the subsequent. Then we put emphasis on
L-biconvex sets on some algebraic substructures.

As a logical algebra, a residuated lattice is an algebraic structure which is simultaneously a lattice
structure. Let us recall the definition of complete residuated lattices.

Definition 1.1. A complete residuated lattice is an algebra (L;∧,∨, ∗,→) such that

(R1) (L;∧,∨, 0, 1) is a complete lattice with the smallest element 0 and the largest element 1,

(R2) (L, ∗, 1) is a commutative monoid, i.e., ∗ is commutative, associative, and a∗1 = 1 holds for each
a ∈ L, and

(R3) ∗ and→ form an adjoint pair, i.e., a ∗ b 6 c⇐⇒ a 6 b→ c for all a, b, c ∈ L.

Suppose that L is a complete residuated lattice. For any a ∈ L, we define ¬a = a → 0, called the
negation of a. A residuated lattice L is called regular [15] if it satisfies the law of double negation, i.e.,
¬¬a = a for all a ∈ L. In this case, we call L a Girard monoid .

Throughout this paper, if not otherwise specified, L denotes a complete residuated lattice.
For a nonempty set X, the notation LX denotes the set of all maps from X to L and every member

of LX is called an L-subset of X. An L-subset A ∈ LX is called constant at a ∈ L if A(x) = a for each
x ∈ X, denoted by aX. For an operation ∗ ∈ {∨,∧,⊗,→} and for all A, B ∈ LX, the L-subset A ∗ B is
pointwisely defined, that is, (A ∗ B)(x) = A(x) ∗ B(x) (∀x ∈ X).

Let ϕ : X −→ Y be a map between two sets. Define ϕ→L : LX −→ LY and ϕ←L : LY −→ LX by
ϕ→L (A)(y) =

∨
ϕ(x)=y A(x) for each A ∈ LX and each y ∈ Y and ϕ←L (B) = B ◦ ϕ for each B ∈ LY ,

respectively.

Definition 1.2. [4, 16] Let X be a nonempty set. A stratified L-convex structure (or a stratified L-
convexity) on X is a subset C of LX such that

(LC1) aX ∈ C for every a ∈ L;
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(LC2)
∧

i∈I Ai ∈ C for each subset {Ai}i∈I of C;

(LC3)
∨

j∈J A j ∈ C for each directed subset {A j} j∈J of C.

A set X equipped with a stratified L-convexity C, denoted by (X,C), is called a stratified L-convex
space. The members of C are called L-convex sets.

Definition 1.3. [9] A map f : (X,CX) −→ (Y,CY) between L-convex spaces is called L-convexity
preserving (L-CP, in short) if f←L (B) ∈ CX for each B ∈ CY .

Definition 1.4. [17,18] Let (X,6) be a partially ordered set and A ∈ LX. Then A is called an L-ordered
convexity if A(z) > A(x) ∧ A(y) whenever x 6 z 6 y.

Definition 1.5. [17, 18] Let X be a meet (resp. join) semilattice and A ∈ LX. Then A is called an
L-subsemilattice if A(x ∧ y) > A(x) ∧ A(y) (resp. A(x ∨ y) > A(x) ∧ A(y)) for all x, y ∈ X.

Definition 1.6. [17, 18] Let X be a meet (resp. join) semilattice and let A ∈ LX. Then A is called an
L-convex subsemilattice if A is an L-subsemilattice and L-ordered convexity.

Proposition 1.7. Let X be a meet (resp. join ) semilattice. Define a subset CS of LX by

CS =
{
C ∈ LX | C is an L-convex subsemiattice

}
.

Then CS is a stratified L-convexity on X, called the stratified L-semilattice convexity.

Proof. (LC1) is obvious. The verifications of (LC2) and (LC3) can be found in [18, Theorem 4.3]. �

Definition 1.8. [17, 18] Let X be a lattice and A ∈ LX. Then A is called an L-sublattice if A(x ∨ y) >
A(x) ∧ A(y) and A(x ∨ y) > A(x) ∧ A(y) for all x, y ∈ X.

Definition 1.9. [17,18] Let X be a lattice and let A ∈ LX. Then A is called an L-convex sublattice if A
is an L-sublattice and L-ordered convexity.

Proposition 1.10. Let X be a lattice. Then (X,CL) is an L-convex space, where

CL =
{
C ∈ LX | C is an L-convex sublattice

}
.

Then CL is called the L-lattice convexity and the pair (X,CL) is called the L-lattice convex space.

Proof. (LC1) is obvious. The verifications of (LC2) and (LC3) can be found in [18, Theorem 5.3]. �

Definition 1.11. [19] Let (X,6) be a partially ordered set. A map A : X −→ L is called an upper set
on X if for all x, y ∈ X with x 6 y, then A(x) 6 A(y). Dually, a mapping A : X −→ L such that for all
x, y ∈ X, x 6 y⇒ A(y) 6 A(x), is called a lower set on X.

Definition 1.12. [17, 20] (i) An L-sublattice A is called an L-ideal if A(x) > A(y) whenever x 6 y. (ii)
An L-sublattice A is called an L-filter if A(x) 6 A(y) whenever x 6 y.

Definition 1.13. [20] (i) A proper L-ideal A ∈ LX is called an L-prime ideal if A(x ∧ y) 6 A(x) ∨ A(y)
for all x, y ∈ X. (ii) A proper L-filter A ∈ LX is called an L-prime filter if A(x ∨ y) 6 A(x) ∨ A(y) for all
x, y ∈ X.

It is easy to see that A ∈ LX is an L-prime ideal if ¬A is an L-prime filter.
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2. L-biconvex sets

The concept of biconvex sets plays an important role in (abstract) convex structures. The existence
of sufficiently many of them in convex structures are required in a series of separation axioms. In this
section, our aim is to extend biconvex sets to L-fuzzy setting.

Definition 2.1. Let (X,C) be an L-convex space. An L-subset H of X is called an L-biconvex set if
H ∈ C and ¬H ∈ C. Denote

H =
{
H ∈ LX | H is an L-biconvex set

}
,

then the pair (X,H) is called an L-half-space.

Remark 2.2. It is easy to see that (X, {0X, 1X}) is an L-half-space on X. All other L-half-spaces are said
to be non-trivial.

We present an elementary result which will be used in the subsequent.

Proposition 2.3. If f : (X,CX) −→ (Y,CY) is L-CP and (Y,HY) is an L-half-space, then f←L (H) is an
L-biconvex set on X for each H ∈ HY .

Proof. Since f is an L-CP map and (Y,HY) is an L-half-space, it follows that f←L (H) ∈ CX and
f←L (¬H) ∈ CX for each H ∈ HY . Hence ¬ f←L (H) ∈ CX by f←L (¬H) = ¬ f←L (H). This shows that f←L (H)
is an L-biconvex set on X for each H ∈ HY . �

3. Main results

3.1. L-semilattice half-spaces

Lemma 3.1. Let (X,6) be a partially ordered set. The following statements hold.

(1) An L-subset A ∈ LX is an upper set iff A = A↑, where A↑(y) =
∨

x6y A(x) for all y ∈ X.

(2) An L-subset A ∈ LX is a lower set iff A = A↓, where A↓(y) =
∨

y6x A(x) for all y ∈ X.

Proof. (1) The sufficiency of this proof is obvious. It remains to show its necessity. By Definition 1.11,
it is obvious that A(y) > A↑(y) whenever x 6 y for all y ∈ X. And we can see that

∨
x6y A(x) > A(y).

Hence A = A↑ by the arbitrariness of y.
(2) The proof is dually analogous to that of (1). �

Theorem 3.2. Let (X,CS ) be an (meet) L-semilattice convex space. Denote

HS = {C↑ ∈ LX | C ∈ CS }.

Then (X,HS ) is an L-half-space of a semilattice. In this case, we call it an (meet) L-semilattice half-
space.

Proof. We need to show that C↑ ∈ CS and ¬C↑ ∈ CS , and consequently the proof can be solved in two
steps.

Step1. C↑ is an L-convex subsemilattice.
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Let x 6 z 6 y. It holds that

C↑(z) =
∨
a6z

C(a) >
∨
a6x

C(a) >
∨
a6x

C(a) ∧
∨
b6y

C(b) = C↑(x) ∧C↑(y).

Thus C↑ is an L-ordered convexity.
Since C(x ∧ y) > C(x) ∧C(y), we have

C↑(x) ∧C↑(y) =
∨
z26x

C(z2) ∧
∨
z36y

C(z3) =
∨
z26x

∨
z36y

C(z2) ∧C(z3)

6
∨
z26x
z36y

C(z2 ∧ z3) 6
∨

z2∧z36x∧y

C(z2 ∧ z3) =
∨

z16x∧y

C(z1)

= C↑(x ∧ y).

This shows that C↑ is an L-subsemilattice.
Step2. ¬C↑ is an L-convex subsemilattice.
Let y1 6 y 6 y2. Then

¬C↑(y1) ∧ ¬C↑(y2) =

∨
x6y1

C(x)→ 0

 ∧
∨

x6y2

C(x)→ 0


6
∨
x6y

C(x)→ 0 =
∧
x6y

(C(x)→ 0) = ¬C↑(y).

Hence, ¬C↑ is an L-order convexity.
It remains to verify that ¬C↑ is an L-subsemilattice. Indeed,

¬C↑(x) ∧ ¬C↑(y) =

∨
z6x

C(z)→ 0

 ∧
∨

z6y

C(z)→ 0


6
∨

z6x∧y

C(z)→ 0 =
∧

z6x∧y

(C(z)→ 0) = ¬C↑(x ∧ y).

This completes the proof. �

Remark 3.3. Let (X,CS ) be an (meet) L-semilattice convex space. Denote

HS = {C↓ ∈ LX | C ∈ CS }.

Then (X,HS ) fails to be an L-half-space in general. This can be seen from the following example.

Example 3.4. Consider the semilattice X = {⊥, x, y, z}, where ⊥ 6 x, y, z and x, y, z are incomparable.
Let L = [0, 1] , and let

x ⊕ y = (x + y) ∧ 1, x′ = 1 − x, for all x, y ∈ L.

Then (L,⊕, ′, 0) is a standard MV-algebra. Define a map A : X −→ L as follows:

A(⊥) = 0.5, A(x) = 0.8, A(y) = 0.3, A(z) = 0.4.
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It is easy to check that (X, {A}) is an (meet) L-semilattice convex space. And we can obtain the
following results:

A↓(⊥) = 0.8, A↓(x) = 0.8,
A↓(y) = 0.3, A↓(z) = 0.4,
¬A↓(⊥) = 0.2, ¬A↓(x) = 0.2,
¬A↓(y) = 0.7, ¬A↓(z) = 0.6.

Hence ¬A(y ∧ z) = 0.2 � ¬A(y) ∧ ¬A(z) = 0.6. Therefore A↓ is not an L-biconvex set.

We can dually obtain the following corollary.

Corollary 3.5. Let (X,CS ) be an (join) L-semilattice convex space. Denote

HS = {C↓ ∈ LX | C ∈ CS }.

Then (X,HS ) is an L-half-space, and in this case we call it an (join) L-semilattice half-space.

Theorem 3.6. Let (X,HS ) be an L-semilattice half-space. Then H is a lower set or an upper set for
any H ∈ HS .

Proof. Suppose that H is neither a lower set nor an upper set for any H ∈ HS . Then, by Definition
1.11, we can obtain that the following results hold.

(1) There exist x1, y1 ∈ X with x1 6 y1 such that H(x1) 
 H(y1).

(2) There exist x2, y2 ∈ X with x2 6 y2 such that H(y2) 
 H(x2).

To this end, we first claim that H(x1∧x2) � H(x1)∧H(x2). Otherwise, we have either H(x1∧x2) > H(x2)
or H(x1∧ x2) > H(x1). For the first circumstance, since x1∧ x2 6 x2 6 y2, it implies from the definition
of L-order convex that H(x2) > H(y2) ∧ H(x1 ∧ x2). Hence H(y2) 6 H(x2), that is a contradiction.
Dually, we can obtain that H(x1) 6 H(y1) is also a contradiction.

Since x1 ∧ x2 6 x1 ∧ y2 6 x1 6 y1 and ¬H is still n amL-ordered convexity, it follows that

¬H(x1 ∧ y2) > ¬H(x1 ∧ x2) ∧ ¬H(y1).

That is,
H(x1 ∧ y2)→ 0 > (H(x1 ∧ x2)→ 0) ∧ (H(y1)→ 0).

This implies
H(x1 ∧ y2) 6 H(x1 ∧ x2) ∨ H(y1) � H(x1) ∧ H(x2).

Hence H(x1) ∧ H(y2) � H(x1) ∧ H(x2), which contradicts to H(y2) 
 H(x2).
Therefore the assumption fails to hold, i.e., H is a lower set or an upper set for any H ∈ HS . �

As the following example shows, the converse is not necessarily valid. That is to say, for an L-half-
space in a semilattice (X,HS ), H being a lower or an upper set can not always imply H ∈ HS .

We will give an example that satisfies:

• (X,HS ) is an L-half-space.
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• H is a lower set, but H < HS , or

• H is an upper set, but H < HS .

Example 3.7. Consider the semilattice X = {⊥, x, y, z}, where ⊥ 6 x, y, z and x, y, z are incomparable..
Let (L,⊕, ′, 0) be a standard MV-algebra. Denote HS = {χ∅, A, B,C, χX}, where A, B,C are defined in
Table 1.

Table 1. An L-semilattice half-space (X,HS ).

χ∅ A B C χX

x 0 0.3 0.5 0.5 1
y 0 0.7 0.4 0.5 1
z 0 0.2 0.8 0.8 1
⊥ 0 0.5 0.5 0.3 1

In realities, we have A ∈ HS , but A is neither an upper set nor a lower set.

3.2. L-lattice half-spaces

Theorem 3.8. Let X be a lattice. Denote

HL = {H ∈ LX | H is an L-prime ideal (filter)}.

Then (X,HL) is an L-half-space of a lattice , and in this case we call it an L-lattice half-space.

Proof. Since the negation of an L-prime ideal is an L-prime filter, it suffices to show that H ∈ CL and
¬H ∈ CL whenever H is an L-prime ideal. And consequently the proof can be seen as follows.

Since H is an L-prime ideal, it follows that H is an L-sublattice and H(y) 6 H(z) 6 H(x) whenever
x 6 z 6 y. Hence H(z) > H(x) ∧ H(y), and thus H is an L-convex sublattice, i.e., H ∈ CL.

Let y1 6 y 6 y2. Then

¬H(y1) ∧ ¬H(y2) = (H(y1)→ 0) ∧ (H(y2)→ 0) 6 H(y)→ 0 = ¬H(y).

Hence, ¬H is L-ordered convex.
For any x, y ∈ X, the following hold that

¬H(x ∧ y) = H(x ∧ y)→ 0
> (H(x) ∨ H(y))→ 0
= (H(x)→ 0) ∧ (H(y)→ 0)
= ¬H(x) ∧ ¬H(y),

and

¬H(x ∨ y) = H(x ∨ y)→ 0 > (H(x)→ 0) ∧ (H(y)→ 0) = ¬H(x) ∧ ¬H(y).

Thus ¬H is an L-sublattice. �
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Theorem 3.9. Let (X,HL) is an L-lattice half-space. Then H is an L-prime ideal or an L-prime filter
for any H ∈ HL.

Proof. From Theorem 3.6, we know that H is a lower set or an upper set for any H ∈ HL. Then we
just need to show that H is an L-prime ideal (an L-prime filter) while H is a lower set (an upper set)
for any H ∈ HL. Obviously, H is an L-ideal. Suppose that H is not an L-prime ideal. It means that
H(x ∧ y) 
 H(x) ∨ H(y) for all x, y ∈ X. Then ¬H(x ∧ y) � ¬H(x) ∧ ¬H(y). But ¬H is an L-convex
lattice. Therefore the assumption fails to hold. �

3.3. L-Boolean lattice half-spaces

In this section, considering L as Giraid monoid, we shall present the concept of L-Boolean lattice
half-spaces. Basic notions related to Boolean lattice from the classical order theory are listed in the
sequel. For more comprehensive presentation, one can refer to [21, 22].

Definition 3.10. [21, 22] Let X be a lattice. X is said to be distributive if it satisfies the following one
of distributive laws:

(D1) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) for all x, y, z ∈ X,

(D2) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) for all x, y, z ∈ X.

Definition 3.11. [21, 22] Let X be a lattice with universal bounds 0, 1. For x ∈ X, we say y ∈ X is a
complement of x if x∧ y = 0 and x∨ y = 1. If x has a unique complement, we denote this complement
by x′.

Remark 3.12. In a distributive lattice an element can have at most one complement.

Definition 3.13. [21, 22] A lattice X is called a Boolean lattice if it satisfies the following conditions:

(B1) X is distributive;

(B2) X has 0X and 1X;

(B3) each x ∈ X has a (necessarily unique) complement x′ ∈ X.

Definition 3.14. Let X be a Boolean lattice.

(i) A proper L-ideal I of X is called an L-maximal ideal if I 6 J implies I = J for all proper L-ideal
J of X.

(ii) A proper L-filter F of X is called an L-maximal filter if F 6 G implies F = G for all proper
L-filter G of X.

Theorem 3.15. Let X be a Boolean lattice and I be a proper L-ideal. Then the following conditions
are equivalent.

(1) I is an L-maximal ideal.

(2) I is an L-prime ideal

(3) For all x ∈ X, I(x) = ¬I(x′).
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4319

Proof. (1) ⇒ (2). Let I be an L-maximal ideal of X and x, y ∈ X. Assume I(x ∧ y) 
 I(x). It remains
to prove I(x∧ y) 6 I(y). Define Ix(k) =

∨
k6(x∨z) I(z). Then we can easily obtain that Ix is an L-ideal and

I 6 Ix. Because I is maximal, we have Ix = I. In particular, I(1) =
∨

x∨z=1 I(z), so x ∨ w = 1 for some
w ∈ X with I(w) 6 I(1). Then I((x ∧ y) ∨ w) = I((x ∨ w) ∧ (y ∨ w)) = I(y ∨ w). Since y 6 y ∨ w, we
have I(y) > I(y ∨ w) > I(y) ∧ I(w). Hence I(w) > I(y). In addition, I(y) > I(x ∧ y) ∧ I(w), and thus
I(y) > I(x ∧ y).

(2) ⇒ (3). Note that x ∧ x′ = 0X for all x ∈ X. Because I is an L-prime ideal, we have IL = I(0X) 6
I(x) ∨ I(x′), i.e., I(x) ∨ I(x′) = 1L. By I is an L-ideal, we have I(x) 6 I(x′) → 0L ⇔ I(x) ∧ I(x′) 6 0L.
Hence,I(x) ∧ I(x′) = 0L. Thus we have I(x) = ¬I(x′)

(3) ⇒ (1). Let J be a proper L-ideal of X with I 6 J. It suffices to show that I > J. Fix x ∈ X with
I(x) � J(x). Then ¬¬I(x) � ¬¬J(x). By (3), we have ¬I(x′) � ¬J(x′), so I(x′) 
 J(x′), which contradicts
to I 6 J. Therefore I is maximal. �

We can dually obtain the following corollary.

Corollary 3.16. Let X be a Boolean lattice and I be a proper L-filter. Then the following conditions
are equivalent.

(1) I is an L-maximal filter;

(2) I is an L-prime filter;

(3) for all x ∈ X, it is the case that F(x) = ¬F(x′).

By Theorems 3.8, 3.9, 3.15 and 3.16, we easily obtain the following corollaries.

Corollary 3.17. Let X be a Boolean lattice. Denote

HB = {H ∈ LX | H is an L-maximal ideal (or filter)}.

Then (X,HB) is an L-half-space of a Boolean lattice, and in this case we call it an L-Boolean lattice
half-space.

Corollary 3.18. Let (X,HL) be an L-Boolean lattice half-space. Then H is an L-maximal ideal or an
L-maximal filter for any H ∈ HL.

4. Conclusions

In this paper, we introduced the notion of L-biconvex sets. Further we gave the corresponding
formulates of L-biconvex sets on three fuzzy algebraic substructures which are L-subsemilattices,
L-sublattices and L-Boolean sublattices. We hope that the results obtained here can be applied in the
separation axioms in the framework of L-convex spaces and also on other important algebraic
structures, such G-algebras, BCK/BCI algebras [23–26].
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