Research article

Post-quantum trapezoid type inequalities

  • Received: 17 October 2019 Accepted: 16 April 2020 Published: 27 April 2020
  • MSC : 26A51, 26D15, 34A08

  • In this study, the assumption of being differentiable for the convex function f in the (p, q)-Hermite-Hadamard inequality is removed. A new identity for the right-hand part of (p, q)-Hermite-Hadamard inequality is proved. By using established identity, some (p, q)-trapezoid integral inequalities for convex and quasi-convex functions are obtained. The presented results in this work extend some results from the earlier research.

    Citation: Muhammad Amer Latif, Mehmet Kunt, Sever Silvestru Dragomir, İmdat İşcan. Post-quantum trapezoid type inequalities[J]. AIMS Mathematics, 2020, 5(4): 4011-4026. doi: 10.3934/math.2020258

    Related Papers:

  • In this study, the assumption of being differentiable for the convex function f in the (p, q)-Hermite-Hadamard inequality is removed. A new identity for the right-hand part of (p, q)-Hermite-Hadamard inequality is proved. By using established identity, some (p, q)-trapezoid integral inequalities for convex and quasi-convex functions are obtained. The presented results in this work extend some results from the earlier research.


    加载中


    [1] M. Alomari, M. Darus, S. S. Dragomir, Inequalities of Hermite-Hadamard's type for functions whose derivatives absolute values are quasi-convex, RGMIA Res. Rep. Coll., 12 (2009), 1-11.
    [2] N. Alp, M. Z. Sarıkaya, M. Kunt, et al. q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions, J. King Saud Univ. Sci., 30 (2018), 193-203. doi: 10.1016/j.jksus.2016.09.007
    [3] N. Alp, M. Z. Sarıkaya, A new definition and properties of quantum integral which calls q-integral, Konuralp J. Math., 5 (2017), 146-159.
    [4] A. G. Azpetitia, Convex functions and the Hadamard inequality, Rev. Colombiana Mat., 28 (1994), 7-12.
    [5] J. D. Bukweli-Kyemba, M. N. Hounkonnou, Quantum deformed algebras: Coherent states and special functions, 2013, arXiv:1301.0116v1.
    [6] S. S. Dragomir, R. P. Agarwal, Two inequalities for diferentiable mappings and applications to special means fo real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998), 91-95. doi: 10.1016/S0893-9659(98)00086-X
    [7] T. Ernst, A Comprehensive Treatment of q-Calculus, Springer, Basel, 2012.
    [8] H. Gauchman, Integral inequalities in q-calculus, Comput. Math. Appl., 47 (2004), 281-300. doi: 10.1016/S0898-1221(04)90025-9
    [9] D. A. Ion, Some estimates on the Hermite-Hadamard inequality through quasi-convex functions, Annals of University of Craiova, Math. Comp. Sci. Ser., 34 (2007), 82-87.
    [10] R. Jagannathan, K. S, Rao, Tow-parameter quantum algebras, twin-basic numbers, and associated generalized hypergeometric series, 2006, arXiv:math/0602613v.
    [11] F. H. Jackson, On a q-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193-203.
    [12] M. Kunt, İ. İşcan, N. Alp, et al. (p, q)-Hermite-Hadamard inequalities and (p, q)-estimates for midpoint type inequalities via convex and quasi-convex functions, RACSAM, 112 (2018), 969-992.
    [13] M. Kunt, İ. İşcan, Erratum: Quantum integral inequalities for convex functions, 2016.
    [14] M. Kunt, İ. İşcan, Erratum: Some quantum estimates for Hermite-Hadamard inequalities, 2016.
    [15] V. Kac, P. Cheung, Quantum Calculus, Springer, 2001.
    [16] M. A. Noor, K. I. Noor, M. U. Awan, Some quantum estimates for Hermite-Hadamard inequalities, Appl. Math. Comput., 251 (2015), 675-679.
    [17] M. A. Noor, K. I. Noor, M. U. Awan, Some quantum integral inequalities via preinvex functions, Appl. Math. Comput., 269 (2015), 242-251.
    [18] C. E. M. Pearce, J. Pečarić, Inequalities for diferentiable mappings with application to special means and quadrature formulae, Appl. Math. Lett., 13 (2000), 51-55. doi: 10.1016/S0893-9659(99)00164-0
    [19] A. W. Roberts, D. E. Varberg, Convex functions, Academic Press, New York, 1973.
    [20] P. N. Sadjang, On the fundamental theorem of (p, q)-calculus and some (p, q)-Taylor formulas, 2013, arXiv:1309.3934v1.
    [21] W. Sudsutad, S. K. Ntouyas, J. Tariboon, Quantum integral inequalities for convex functions, J. Math. Inequal., 9 (2015), 781-793. doi: 10.7153/jmi-09-64
    [22] M. Tunç, E. Göv, (p, q)-Integral inequalities, RGMIA Res. Rep. Coll., 19 (2016), 1-13.
    [23] M. Tunç, E. Göv, Some integral inequalities via (p, q)-calculus on finite intervals, RGMIA Res. Rep. Coll., 19 (2016), 1-12.
    [24] M. Tunç, E. Göv, S. Balgeçti, Simpson type quantum integral inequalities for convex functions, Miskolc Math. Notes, 19 (2018), 649-664. doi: 10.18514/MMN.2018.1661
    [25] J. Tariboon, S. K. Ntouyas, Quantum integral inequalities on finite intervals, J. Inequal. Appl., 121 (2014), 1-13.
    [26] J. Tariboon, S. K. Ntouyas, Quantum calculus on finite intervals and applications to impulsive difference equations, Adv. Differ. Equ., 282 (2013), 1-19.
    [27] L. Yang, R. Yang, Some new Hermite-Hadamard type inequalities for h-convex functions via quantum integral on finite intervals, J. Math. Comput. Sci., 18 (2018), 74-86. doi: 10.22436/jmcs.018.01.08
    [28] Y. Zhang, T. S. Du, H. Wang, et al. Different types of quantum integral inequalities via (α, m)- convexity, J. Inequal. Appl., 264 (2018), 1-24.
    [29] H. Zhuang, W. Liu, J.Park, Some quantum estimates of Hermite-Hadamard inequalities for quasiconvex functions, Mathematics, 7 (2019), 1-18. doi: 10.3390/math7020152
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3869) PDF downloads(333) Cited by(29)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog