Citation: Wei Sun, Yan Wang, Shiyong Li. An optimal resource allocation scheme for virtual machine placement of deploying enterprise applications into the cloud[J]. AIMS Mathematics, 2020, 5(4): 3966-3989. doi: 10.3934/math.2020256
[1] | N. Alsaeed, M. Saleh, Towards cloud computing services for higher educational institutions: Concepts & literature review, IEEE International Conference on Cloud Computing (ICCC), 2015, 1-7, Riyadh, Saudi Arabia. |
[2] | P. M. Mell, T. Grance, The NIST definition of cloud computing, National Institute of Standards & Technology, 2011. |
[3] | M. Reza, Framework on large public sector implementation of cloud computing, IEEE International Conference on Cloud Computing and Social Networking (ICCCSN), 2012, 1-4, Bandung, Indonesia. |
[4] | S. Li, Y. Zhang, W. Sun, Optimal resource allocation model and algorithm for elastic enterprise applications migration to the cloud, Mathematics, 7 (2019), 1-20. |
[5] | S. Li, W. Sun, Utility maximisation for resource allocation of migrating enterprise applications into the cloud, Enterp. Inf. Syst., 2020. |
[6] | P. D. Bharathi, P. Prakash, M. V. K. Kiran, Energy efficient strategy for task allocation and VM placement in cloud environment, IEEE Innovations in Power and Advanced Computing Technologies (i-PACT), 2017, 1-6, Vellore, India. |
[7] | B. Zhang, Z. Qian, W. Huang, et al. Minimizing communication traffic in data centers with poweraware VM placement, IEEE Sixth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, 2012, Palermo, Italy. |
[8] | F. B. Hassen, Z. Brahmi, H. Toumi, VM placement algorithm based on recruitment process within ant colonies, IEEE International Conference on Digital Economy (ICDEc), 2016, Carthage, Tunisia. |
[9] | M. Sindelar, P. K. Sitaraman, P. Shenoy, Sharing-aware algorithms for virtual machine colocation, ACM Symposium on Parallelism in Algorithms and Architectures, June 04-06, 2011, 367-378, San Jose, California, USA. |
[10] | A. Beloglazov, J. Abawajy, R. Buyya, Energy-aware resource allocation heuristics for efficient management of data centers for Cloud computing, Futur. Gener. Comp. Syst., 28 (2012), 755-768. doi: 10.1016/j.future.2011.04.017 |
[11] | S. B. Shaw, A. K. Singh, Use of proactive and reactive hotspot detection technique to reduce the number of virtual machine migration and energy consumption in cloud data center, Comput. Electr. Eng., 47 (2015), 241-254. doi: 10.1016/j.compeleceng.2015.07.020 |
[12] | N. K. Sharma, G. R. M. Reddy, Multi-objective energy efficient virtual machines allocation at the cloud data center, IEEE Trans. Serv. Comput., 12 (2019), 158-171. doi: 10.1109/TSC.2016.2596289 |
[13] | Z. Xiao, W. Song, Q. Chen, Dynamic resource allocation using virtual machines for cloud computing environment, IEEE Trans. Parallel Distrib. Syst., 24 (2013), 1107-1117. doi: 10.1109/TPDS.2012.283 |
[14] | A. Khosravi, L. L. H. Andrew, R. Buyya, Dynamic VM placement method for minimizing energy and carbon cost in geographically distributed cloud data centers, IEEE Trans. Sustainable Comput., 2 (2017), 183-196. doi: 10.1109/TSUSC.2017.2709980 |
[15] | S. K. Mishra, D. Puthal, B. Sahoo, et al. An adaptive task allocation technique for green cloud computing, J. Supercomput., 74 (2018), 370-385. doi: 10.1007/s11227-017-2133-4 |
[16] | E. Mohammadi, M. Karimi, S. R. Heikalabad. A novel virtual machine placement in cloud computing, Aust. J. Basic Appl. Sci., 5 (2011), 1549-1555. |
[17] | S. Rahman, A. Gupta, M. Tornatore, et al. Dynamic workload migration over backbone network to minimize data center electricity cost, IEEE Trans. Green Commun. Netw., 2 (2018), 570-579. doi: 10.1109/TGCN.2017.2780133 |
[18] | X. Meng, V. Pappas, L. Zhang, Improving the scalability of data center networks with traffic-aware virtual machine placement, Proceedings IEEE INFOCOM, 2010, 1-9, San Diego, CA, USA. |
[19] | W. Wang, B. Liang, B. Li, Multi-resource fair allocation in heterogeneous cloud computing systems, IEEE Trans. Parallel Distrib. Syst., 26 (2015), 2822-2835. doi: 10.1109/TPDS.2014.2362139 |
[20] | G. Wei, A. V. Vasilakos, Y. Zheng, et al. A game-theoretic method of fair resource allocation for cloud computing services, J. Supercomput., 54 (2010), 252-269. doi: 10.1007/s11227-009-0318-1 |
[21] | K. Wang, W. Quan, N. Cheng, et al. Betweenness centrality based software defined routing: Observation from practical Internet datasets, ACM Trans. Internet. Technol., 19 (2019), 1-19. |
[22] | F. Song, Z. Ai, Y. Zhou, et al. Smart collaborative automation for receive buffer control in multipath industrial networks, IEEE Trans. Ind. Inform., 16 (2020), 1385-1394. doi: 10.1109/TII.2019.2950109 |
[23] | Z. Ai, Y. Zhou, F. Song, A smart collaborative routing protocol for reliable data diffusion in IoT scenarios, Sensors, 18 (2018), 1-21. doi: 10.1109/JSEN.2018.2870228 |
[24] | F. Song, M. Zhu, Y. Zhou, et al. Smart collaborative tracking for ubiquitous power IoT in edgecloud interplay domain, IEEE Int. Things J., 2020. |
[25] | K. Wang, H. Yin, W. Quan, et al. Enabling collaborative edge computing for software defined vehicular networks, IEEE Netw., 32 (2018), 112-117. doi: 10.1109/MNET.2018.1700364 |
[26] | F. Lin, X. Lv, I. You, et al. A novel utility based resource management scheme in vehicular social edge computing, IEEE Access, 6 (2018), 66673-66684. doi: 10.1109/ACCESS.2018.2878879 |
[27] | G. H. S. Carvalho, I. Woungang, A. Anpalagan, et al. Intercloud and hetNet for mobile cloud computing in 5G systems: Design issues, challenges, and optimization, IEEE Netw., 31 (2017), 80-89. doi: 10.1109/MNET.2017.1600162 |
[28] | Z. Ai, Y. Liu, F. Song, et al. A smart collaborative charging algorithm for mobile power distribution in 5G networks, IEEE Access, 6 (2018), 28668-28679. doi: 10.1109/ACCESS.2018.2818790 |
[29] | F. Song, Y. Zhou, L. Chang, et al. Modeling space-terrestrial integrated networks with smart collaborative theory, IEEE Netw., 33 (2019), 51-57. doi: 10.1109/MNET.2018.1800187 |
[30] | F. Song, Y. Zhou, Y. Wang, et al. Smart collaborative distribution for privacy enhancement in moving target defense, Inf. Sci., 479 (2019), 593-606. doi: 10.1016/j.ins.2018.06.002 |
[31] | C. Helene, G. L. Louet, J. M. Menaud, Virtual machine placement for hybrid cloud using constraint programming, IEEE 23rd International Conference on Parallel and Distributed Systems (ICPADS), 2017, 326-333. |
[32] | M. S. P. Mohamed, S. R. Swarnammal, An efficient framework to handle integrated VM workloads in heterogeneous cloud infrastructure, Soft Comput., 21 (2017), 3367-3376. doi: 10.1007/s00500-015-2014-9 |
[33] | S. Chaisiri, B. S. Lee, D. Niyato, Optimization of resource provisioning cost in cloud computing, IEEE Trans. Serv. Comput., 5 (2012), 164-177. doi: 10.1109/TSC.2011.7 |
[34] | X. Zheng, Y. Xia, Exploring mixed integer programming reformulations for virtual machine placement with disk anti-colocation constraints, Perform. Eval., 135 (2019), 1-18. doi: 10.1016/j.peva.2019.102035 |
[35] | B. Xu, Z. Peng, F. Xiao, et al. Dynamic deployment of virtual machines in cloud computing using multi-objective optimization, Soft Comput., 19 (2015), 2265-2273. doi: 10.1007/s00500-014-1406-6 |
[36] | D. Zhao, J. Zhou, K. Li, An energy-aware algorithm for virtual machine placement in cloud computing, IEEE Access, 7 (2019), 55659-55668. doi: 10.1109/ACCESS.2019.2913175 |
[37] | M. A. Kaaouache, S. Bouamama, An energy-efficient VM placement method for cloud data centers using a hybrid genetic algorithm, J. Syst. Inf. Technol., 20 (2018), 430-445. doi: 10.1108/JSIT-10-2017-0089 |
[38] | F. Stefanello, V. Aggarwal, L. S. Buriol, et al. Hybrid algorithms for placement of virtual machines across geo-separated data centers, J. Comb. Optim., 38 (2019), 748-793. doi: 10.1007/s10878-019-00411-3 |
[39] | X. Liu, Z. Zhan, J. D. Deng, et al. An energy efficient ant colony system for virtual machine placement in cloud computing, IEEE Trans. Evol. Comput., 22 (2018), 113-128. doi: 10.1109/TEVC.2016.2623803 |
[40] | F. Alharbi, Y. Tian, M. Tang, et al. An ant colony system for energy-efficient dynamic virtual machine placement in data centers, Expert Syst. Appl., 120 (2019), 228-238. doi: 10.1016/j.eswa.2018.11.029 |
[41] | X. Wang, Z. Liu, An energy-aware VMs placement algorithm in cloud computing environment, IEEE Second International Conference on Intelligent System Design and Engineering Application, 2012, 627-630, Sanya, Hainan, China. |
[42] | M. A. Kaaouache, S. Bouamama, Solving bin packing problem with a hybrid genetic algorithm for VM placement in cloud, Procedia Comput. Sci., 60 (2015), 1061-1069. doi: 10.1016/j.procs.2015.08.151 |
[43] | J. Xu, J. A. B. Fortes, Multi-objective virtual machine placement in virtualized data center environments, IEEE/ACM International Conference on Green Computing and Communications & International Conference on Cyber, Physical and Social Computing, 2010, 179-188, Hangzhou, China. |
[44] | S. Dörterler, M. Dörterler, S. Ozdemir, Multi-objective virtual machine placement optimization for cloud computing, IEEE International Symposium on Networks, Computers and Communications (ISNCC), 2017, Marrakech, Morocco. |
[45] | D. Jayasinghe, C. Pu, T. Eilam, et al. Improving performance and availability of services hosted on IaaS clouds with structural constraint-aware virtual machine placement, IEEE International Conference on Services Computing, 2011, 72-79, Washington, DC, USA. |
[46] | W. Fang, X. Liang, S. Li, et al. VMPlanner: Optimizing virtual machine placement and traffic flow routing to reduce network power costs in cloud data centers, Comput. Netw., 57 (2013), 179-196. doi: 10.1016/j.comnet.2012.09.008 |
[47] | L. Guo, T. Yan, S. Zhao, et al. Dynamic performance optimization for cloud computing using M/M/m queueing system, J. Appl. Math., 2014 (2014), 1-8. |
[48] | Z. Xiao, J. Jiang, Y. Zhu, et al. A solution of dynamic VMs placement problem for energy consumption optimization based on evolutionary game theory, J. Syst. Softw., 101 (2015), 260-272. doi: 10.1016/j.jss.2014.12.030 |
[49] | F. Song, D. Huang, H. Zhou, et al. An optimization-based scheme for efficient virtual machine placement, Int. J. Parallel Program., 42 (2014), 853-872. doi: 10.1007/s10766-013-0274-5 |
[50] | D. Huang, L. Yi, F. Song, et al. A secure cost-effective migration of enterprise applications to the cloud, Int. J. Commun. Syst., 27 (2014), 3996-4013. doi: 10.1002/dac.2594 |
[51] | M. Chiang, S. H. Low, A. R. Calderbank, et al. Layering as optimization decomposition: a mathematical theory of network architectures, Proc. IEEE, 95 (2007), 255-312. doi: 10.1109/JPROC.2006.887322 |
[52] | S. Li, W. Sun, Q. L. Li, Utility maximization for bandwidth allocation in peer-to-peer file-sharing networks, J. Ind. Manag. Optim., 16 (2020), 1099-1117. |
[53] | W. E. Boyce, R. C. DiPrima, Elementary Differential Equations and Boundary Value Problems, Hoboken: John Wiley & Sons, 2005. |
[54] | Q. V. Pham, W. J. Hwang, Network utility maximization based congestion control over wireless networks: A survey and potential directives, IEEE Commun. Surv. Tut., 19 (2017), 1173-1200. doi: 10.1109/COMST.2016.2619485 |
[55] | J. Kennedy, R. C. Eberhart, Particle swarm optimization, Proceeding of the 1995 IEEE International Conference on Neural Networks (ICNN), 1995, 1942-1948. |
[56] | S. Li, W. Sun, J. Liu, A mechanism of bandwidth allocation for peer-to-peer file-sharing networks via particle swarm optimization, J. Intell. Fuzzy Syst., 35 (2018), 2269-2280. doi: 10.3233/JIFS-172276 |
[57] | M. Clerc, J. Kennedy, The particle swarm-explosion, stability, and convergence in a multidimensional complex space, IEEE Trans. Evol. Comput., 6 (2002), 58-73. doi: 10.1109/4235.985692 |