Research article

On normal curves and their characterizations in Lorentzian n-space

  • Received: 12 December 2019 Accepted: 30 March 2020 Published: 09 April 2020
  • MSC : 53A04, 53A35, 53B30

  • This paper deals with the generalization of null and non-null normal curves in Lorentzian n -space E1n. We reveal necessary and sufficient condition for a curve to be a normal curve in Lorentzian n -space E1n. We obtain the relationship between the curvatures for any arclength parametrized curve to be congruent to a normal curve in E1n. Moreover, we give differential equations by introducing a differentiable function f(s) which can be solved explicitly for a curve to be congruent to a normal curve.

    Citation: Özgür Boyacıoğlu Kalkan. On normal curves and their characterizations in Lorentzian n-space[J]. AIMS Mathematics, 2020, 5(4): 3510-3524. doi: 10.3934/math.2020228

    Related Papers:

  • This paper deals with the generalization of null and non-null normal curves in Lorentzian n -space E1n. We reveal necessary and sufficient condition for a curve to be a normal curve in Lorentzian n -space E1n. We obtain the relationship between the curvatures for any arclength parametrized curve to be congruent to a normal curve in E1n. Moreover, we give differential equations by introducing a differentiable function f(s) which can be solved explicitly for a curve to be congruent to a normal curve.


    加载中


    [1] K. Honda, J. Inoguchi, Cesaro's method for Cartan framed null curves, Preprint, 2003.
    [2] B. Y. Chen, When does the position vector of a space curve always lie in its rectifying plane?, Am. Math. Mon., 110 (2003), 147-152. doi: 10.1080/00029890.2003.11919949
    [3] B. Y. Chen, F. Dillen, Rectifying curves as centrodes and extremal curves, Bull. Inst. Math. Acad., 2 (2005), 77-90.
    [4] K. İlarslan, E. Nešovic, M. Petrović-Torgašev, Some characterizations of rectifying curves in the Minkowski 3-space, Novi. Sad. J. Math., 33 (2003), 23-32.
    [5] S. Izumiya, N. Takeuchi, New special curves and developable surfaces, Turk. J. Math., 28 (2004), 153-163.
    [6] K. İlarslan, E. Nešovic, Some characterizations of rectifying curves in the Euclidean space E4, Turk. J. Math., 32 (2008), 21-30.
    [7] T. Ali, M. Önder, Some characterizations of spacelike rectifying curves in the Minkowski space-time, Glob. J. Sci. Front. Res. Math. Decision Sci., 12 (2012), 57-64.
    [8] S. Cambie, W. Goemans, I. Van Den Bussche, Rectifying curves in then n -dimensional Euclidean space, Turk. J. Math., 40 (2016), 210-223. doi: 10.3906/mat-1502-77
    [9] Ö. B. Kalkan, H. Öztürk, On rectifying curves in Lorentzian n-space Evn, C. R. Acad. Bulg. Sci., 72 (2019), 158-169.
    [10] K. İlarslan, Spacelike normal curves in Minkowski 3-space E13, Turk. J. Math., 29 (2005), 53-63.
    [11] K. İlarslan, E. Nešovic, Timelike and null normal curves in Minkowski space E13, Indian J. Pure Appl. Math., 35 (2004), 881-888.
    [12] K. İlarslan, E. Nešovic, Spacelike and timelike normal curves in Minkowski space-time, Publ. I. Math. Nouvelle série, 85 (2009), 111-118. doi: 10.2298/PIM0999111I
    [13] M. Grbovic, E. Nešovic, Some relations between rectifying and normal curves in Minkowski 3-space, Math. Commun., 17 (2012), 655-664.
    [14] H. Öztekin, Normal and rectifying curves in Galilean space G3, Proc. IAM, 5 (2016), 98-109.
    [15] H. Öztekin, A. O. Öğrenmiş, Normal and rectifying curves in pseudo-Galilean space G13 and their characterizations, J. Math. Comput. Sci., 2 (2012), 91-100.
    [16] Ö. Bektaş, Normal curves in the n-dimensional Euclidean space, Adv. Differ. Equ., 456 (2018), 1-12.
    [17] B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, London, 1983.
    [18] E. İyigün, K. Arslan, On Harmonic Curvatures of Curves in Lorentzian n-Space, Commun. Fac. Sci. Univ. Ank. Series A1, 54 (2005), 29-34.
    [19] Ç. Camcı, K. İlarslan, E. Šućurović, On pseudohyperbolical curves in Minkowski space-time, Turk. J. Math., 27 (2003), 315-328.
    [20] S. Breuer, D. Gottlieb, Explicit characterization of spherical curves, P. Am. Math. Soc., 27 (1971), 126-127. doi: 10.1090/S0002-9939-1971-0270275-2
    [21] Y. C. Wong, On an explicit characterization of spherical curves, P. Am. Math. Soc., 34 (1972), 239-242.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3175) PDF downloads(273) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog