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1. Introduction 

In the Euclidean space 3E , three classes of curves exists, which are called rectifying, normal 

and osculating curves all satisfying Cesaro’s fixed point condition [1]. The rectifying curve in 3E  is 

defined as a curve whose position vector always lies in its rectifying plane which is spanned by the 

tangent vector T  and the binormal vector B  [2]. The relationship between the rectifying curves and 

the notion of centrodes in mechanics was introduced in [3]. Many authors in their papers have 

investigated rectifying curves in Euclidean and Lorentz-Minkowski space [4–9]. 

Similarly, a normal curve in Minkowski 3-space 3

1E  is defined in [10] as a space curve whose 

position vector always lies in its normal plane which is spanned by the normal vector N  and the 

binormal vector B  of the curve. According to this definition, the position vector of a normal curve 

satisfies ( ) ( ) ( ) ( ) ( )s s N s s B s     for some differentiable functions ( )s  and ( )s  in arclength 

function s . Spacelike, timelike and null normal curves in Minkowski space are studied in [10] and [11]. 

Spacelike and timelike normal curves in Minkowski space-time are investigated in [12]. The 
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relations between rectifying and normal curves in Minkowski 3-space are obtained in [13]. The 

characterizations of normal curves in Galilean space are obtained in [14] and [15]. Moreover in [16], 

the definition and concept of a normal curve is extended to the general case nE . 

In this paper, by using similar methods as in [8], we introduce the normal curves in the 

Lorentzian n -space 1

nE . We characterize null and non-null normal curves in terms of their curvature 

functions and obtain necessary and sufficient conditions for any curve to be a normal curve. 

2. Preliminaries 

Let 1

nE  denote the Lorentzian n -space. For vectors 
1 2( , ,..., )nX x x x  and 

1 2( , ,..., )nY y y y  in 1

nE  

1 1
2

,
n

i i
i

X Y x y x y


     

is called Lorentzian inner product. Since ,  is an indefinite metric, recall that a vector 1

nv E  can have 

one of three causal characters; it can be spacelike , 0v v   or 0v  ; timelike if , 0v v   and null (lightlike) 

if , 0v v  and 0.v   The pseudo-norm (length) of a vector v  is given by ,v v v  [17]. 

We define the curve of ( )s   to be an arclength parametrized non-null curve in 1

nE . Let

1 2{ ( ), ( ), ( ),..., ( )}nT s N s B s B s
 be the moving frame along ,  where the vectors ( ), ( ),T s N s

1 2( ),..., ( )nB s B s
 are mutually orthogonal vectors satisfying 

1 2 2, 1, , 1 , 1, {1,2,..., 2}i i iT T N N and B B i n              .               (2.1) 

Then the Frenet equations of the curve α are as follows [18]: 

2 1

1 1 3 2 1

1 2 2 4 3 2

1 1 1 3 2 1

2 1 1 3

( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ).

i i i i i i i

n n n n

T s k s N s

N s k s T s k s B s

B s k s N s k s B s

B s k s B s k s B s

B s k s B s



 

 

 



     

   

 

   

   

   

  

                                          (2.2) 

If the curve is not arclength parametrized, then the right-hand sides of (2.2) must be multiplied by the 

speed   of  . We recall the functions ( )ik s  are called the i -th curvatures of for {1,2,..., 1}i n  . All 

the curvatures satisfy ( ) 0ik s   for all , 1 2.s I i n     If 1( ) 0nk s   for all s I , then 2 ( )nB s  is a 

constant vector and the curve lies in a ( 1)n   -dimensional affine subspace orthogonal to 
2nB 
 which 

is isometric to the Lorentzian ( 1)n  -space 1

1

nE  . Thus the curve lies in a hyperplane if and only if in 

every point the position vector of a curve lies in the orthogonal complement of 
2nB 
. Analogously, if 

in every point the position vector of an arclength parametrized curve lies in the orthogonal 

complement of the tangent vector T , then the curve   lies on some hyperquadrics. Indeed, we see 

that the derivative of ,   is zero; hence ,   is a constant and thus lies on some hyperquadrics. 

Here the converse is also true. From this reasoning, we study curves for which in every point the 

position vector of the curve lies in the orthogonal complement of the tangent vector T  [8]. 

Definition 2.1. A curve 1: nI E    is a normal curve if the orthogonal complement of ( )T s  

contains a fixed point for all s I . Hereafter, since the orthogonal complement of ( )T s  is defined by
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1( ) { , ( ) 0}nT s E T s     , the position vector of a normal curve holds (2.3) with 
1 2 2, , ,... n    

 

differentiable real functions 

1 1 2 2( ) ( ) ( ) ( ) ( ) ... ( ) ( )n ns s N s s B s s B s         .                                  (2.3) 

Let us note that the hyperquadrics 1

1

nS   and 1

0

nH   are defined by 

1 1

1 1 0 1{ , 1}, { , 1}n n n nS E v v H E v v          

respectively. In the rest of this paper, we assume that all the curvatures of the curve are not 

identically zero. 

3. Some characterizations of null normal curves in 1

nE  

In this section we give some characterizations of null normal curves in 1

nE , 4n . 

Let 1: nI E    be a null curve parametrized by the pseudo-arclength such that 

{ ( ), ( ),..., ( )}ns s s     is a basis of 
( ) 1

n

sT E  for all s . Then there exists only one Frenet frame 

satisfying the equations 

1 1

1 1 2 2

2 2 3 3

1 1 1

2 2 3

,

,

,

,

, {3,..., 3}i i i i i

n n n

T N

N k T B

B k N k B

B k T k B

B k B k B i n

B k B

  

  

 

  

   

   

     

  

                                                 (3.1) 

where 

1 1 1

2 2 2 2

, , 0, , 1,

, , ... , 1.n n

T T B B T B

N N B B B B 

  

   
. 

Let ( )s  be a null normal curve in 1

nE , parametrized by pseudo-arclength s . Then its position vector 

satisfies the equation 

1 2 2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ... ( ) ( )n ns s T s s N s s B s s B s                                       (3.2) 

for some differentiable functions 
1 2 2( ), ( ), ( ),..., ( )ns s s s    

. Differentiating (3.2) with respect to s  

and by using (3.1), we obtain the system of equations 

1 1 2 2 1,k k                                                                               (3.3) 

1 0,                                                                                    (3.4) 
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1 0,                                                                                      (3.5) 

2 3 3 0,k                                                                                   (3.6) 

1 1 1 0,i i i i ik k    
                                 {2,3..., 3},i n                   (3.7) 

2 3 2 0.n n nk   
                                                                              (3.8) 

From the Eqs. (3.4) and (3.5) we get 
1( ) 0s   and ( ) 0s  . Considering the differentiable functions 

1 2 2( ), ( ), ( ),..., ( )ns s s s    
, we get the following theorem. 

Theorem 3.1. Let 1: nI E    be a null normal curve in 1

nE , parametrized by pseudo-arclength .s  

Then the following statements are hold: 

i. The components of the position vector of   are 

( ) 0s  ,             1( ) 0,s   

2

,
0

2

1
( ) ( )

( )

k
i

i i k k
i

s s
s k s

 




 
   

  
           {2,3,..., 2}i n   

where the functions ,i k  can be inductively defined by 

1,0 2,00, 1    

and for {3,4,..., 2}i n   

1 2,0 1,0

,0

1 2, 1, 1 1,

,

1, 4 1, 3

, 3

1, 3

, 2

( ) ( ) ( )
( ) ,

( )

( ) ( ) ( ) ( )
( ) ,

( )

( ) ( )
( ) ,

( )

( )
( ) .

( )

i i i

i

i

i i k i k i k

i k

i

i i i i

i i

i

i i

i i

i

k s s s
s

k s

k s s s s
s

k s

s s
s

k s

s
s

k s

 


  


 





  

    

   



 






 







                                       (3.9) 

ii. If 2 3 2, ,..., nk k k   are nonzero constants, then α lies in pseudosphere 1

1 0( ), .nS r r    

Proof. i. Let ( )s  be a null normal curve in 1

nE , parametrized by pseudo-arclength .s  Then its 

position vector is given by (3.2). Then the equation system (3.3)–(3.8) gives 

( ) 0s  ,             1( ) 0,s   

2

2

1
( )

( )
s

k s
   ,           3

3 2

1 1
( )

( ) ( )
s

k s k s


 
  

 
.                                           (3.10) 
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Considering the functions 1,0 2,0 3,0, ,    and 3,1 , we have 

1 1,0 1,0

2

2 2,0 2,0

2

3 3,0 3,1

3 2 3

1
( ) ( ) , ( ) 0,

( )

1
( ) ( ) , ( ) 1,

( )

1 1 1
( ) , ( ) 0, ( ) .

( ) ( ) ( )

s s s
k s

s s s
k s

s s s
k s k s k s

  

  

  

 
   

 

 
   

 

 
    

 

 

By induction from (3.7), we obtain 

2

,
0

2

1
( ) ( ) , 2 2.

( )

k
i

i i k k
k

s s i n
s k s

 




 
      

  
                                    (3.11) 

Here the functions ,i k  are defined by (3.9). This proves the statement (i). 

ii. If 
2 3 2, ,..., nk k k 

 are nonzero constants, then the components 
2 3 2, ..., n   

 of the position vector 

of ( )s  are constant numbers. Then the position vector of ( )s  is 

2 2 3 3 2 2( ) ( ) ( ) ... ( ).n ns B s B s B s          

From the last equation, we get 

2 2 2 2

2 3 2 0( ), ( ) ... , ,ns s r r     

       

which means that ( )s  lies in 1

1 ( )nS r with center at the origin and the radius .r  This proves the 

statement (ii). 

Theorem 3.2. Let 1: nI E    be a null curve in 1

nE  with nonzero curvatures. Then ( )s  is 

congruent to a normal curve if and only if 

4 5

2, 2 3,
0 0

2 2

1 1
( ) ( ) ( ) 0

( ) ( )

k k
n n

n k n n kk k
k k

s k s s
s k s s k s

 
 

  
 

       
                    

.                         (3.12) 

Proof. If ( )s  is a null normal curve in 1

nE , writing (3.11) for 3i n   and 2i n   in (3.8), we 

obtain (3.12). 

Conversely, assume that (3.12) holds. Then we define the vector 1( ) nm s E  given by 

2 2 2 2( ) ( ) ( ) ( ) ... ( ) ( )n nm s s s B s s B s                                                (3.13) 

with 2 3 2, ,..., n     as in (3.10) and (3.11). If we differentiate (3.13) with respect to s  and using (3.1) 



3515 

AIMS Mathematics                                                               Volume 5, Issue 4, 3510–3524. 

4 5

2, 2 3, 2
0 0

2 2

1 1
( ) ( ) ( ) ( ) ( )

( ) ( )

k k
n n

n k n n k nk k
k k

m s s k s s B s
s k s s k s

 
 

   
 

                                
 

                (3.14) 

gives ( ) 0m s  . Then ( )m s  is a constant vector and so ( )s  is congruent to a null normal curve. 

4. Some characterizations of non-null normal curves in 1

nE  

In this section, we first characterize the non-null normal curves in terms of their curvatures. 

Let 1: nI E    be an arclength parametrized non-null normal curve in 1

nE . The position 

vector of the curve satisfies (2.3) for smooth functions 
1 2 2, , ,... n    

. Differentiating (2.3) with 

respect to s  and using (2.2), we have 

1 1 2 2 1

3 2 1 3 3 2 1

3

2 1 1 2 2 1
2

2 1 3 2

( ) ( ) ( ) ( ) ( ( ) ( ) ( )) ( )

( ( ) ( ) ( ) ( ) ( )) ( )

( ( ) ( ) ( ) ( ) ( )) ( )

( ( ) ( ) ( )) ( )

n

i i i i i i i i
i

n n n n n

T s k s s T s s k s s N s

k s s s k s s B s

k s s s k s s B s

s k s s B s

    

    

    

  



     


   

   

  

  

 

 

It follows that 

1 11 ( ) ( ) 0,k s s                                                                                  (4.1) 

2 2 1( ) ( ) ( ) 0,s k s s                                                                               (4.2) 

3 2 1 3 3 2( ) ( ) ( ) ( ) ( ) 0,k s s s k s s                                                                   (4.3) 

2 1 1 2 2 1( ) ( ) ( ) ( ) ( ) 0,i i i i i i ik s s s k s s         
            {2,3,..., 3}i n                     (4.4) 

2 1 3( ) ( ) ( ) 0n n n ns k s s    
   .                                                                        (4.5) 

This system consists of n  equations and ( 1)n   curvature functions, the function   and ( 2)n   

functions 
i . Thus the coefficient functions 

i  can be expressed in terms of the curvature functions, 

derivatives of the curvature functions and the function .  From (4.1), we have 

1

1

( )
( )

s
k s


   .                                                                           (4.6) 

Using the coefficient (4.6) in (4.2), we get 

1 1 2

2 1

1 1
( )

( ) ( )
s

k s k s
  

 
   

 
.                                                               (4.7) 

Similarly using the coefficient (4.7) in (4.3), we obtain 
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1 3 2
2 3 2

3 1 2 1

( ) 1 1
( )

( ) ( ) ( ) ( )

k s
s

k s k s k s k s

 
  

             
 

. 

When the other coefficient functions are calculated, long and complex expressions with curvature 

functions appear. Considering the functions 1,0 2,0 2,1, ,    and 2,2 , we have 

1 1,1 1,1 1 2

1 2

1 1
( ) ( ) , ( )

( ) ( )
s s s

k s k s
    

 
   

 
,                                             (4.8) 

2 2,0 2,1 2,2

1 1 1

1 1 1
( ) ( ) ( ) ( )

( ) ( ) ( )
s s s s

k s k s k s
   

      
       

     
                                    (4.9) 

where 

2
2,0 1 2,1 1 2 3

3 3 2

2,2 1 2 3

3 2

( ) 1 1
( ) , ( ) ,

( ) ( ) ( )

1 1
( ) .

( ) ( )

k s
s s

k s k s k s

s
k s k s

     

   

  
      

  

  
    

  

                                      (4.10) 

Similarly introducing the functions 3,0 3,1 3,2, ,    and 
33  we have 

3 3,0 3,1 3,2 3,3

1 1 1 1

1 1 1 1
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
s s s s s

k s k s k s k s
    

         
           

       
                    (4.11) 

where 

1 4 2
3,0

4 3

31 4 2
3,1 2 4 2 3

4 2 3 3 2

1 2 3 4
3,2

4 3 2 3 2

( )
( ) ,

( ) ( )

( ) ( ) 1 1
( ) ,

( ) ( ) ( ) ( ) ( )

1 1 1 1
( )

( ) ( ) ( ) ( ) ( )

k s
s

k s k s

k s k s
s

k s k s k s k s k s

s
k s k s k s k s k s

 


 
    

   


 
  

 

                       
 

     
     

   

1 2 3 4
3,3

4 3 2

,

1 1
( ) .

( ) ( ) ( )
s

k s k s k s

   


 
 

 
  

  
   

  

                            (4.12) 

By induction from (4.4), we obtain 

,
0

1

1
( ) ( ) , 1 2.

( )

k
i

i i k k
k

s s i n
s k s

 


 
     

  
                                      (4.13) 
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Here the functions ,i k  can be inductively defined by 

 

2
1,0 1,1 1 2 2,0 1

2 3

2,1 1 2 3 2,2 1 2 3

3 2 3 2

1
,0 1 2,0 1,0

1

1
,

1

( )1
( ) 0, ( ) , ( ) ,

( ) ( )

1 1 1 1
( ) , ( ) ,

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ,
( )

( )
(

i
i i i i i

i

i
i k

i

k s
s s s

k s k s

s s
k s k s k s k s

s k s s s
k s

s
k s

     

       


   





  







    

      
         

      

 

  

 

1 2, 1, 1, 1

1
, 1 1, 2 1, 1

1

1
, 1, 1

1

( ) ( ) ( ) ( ) ,
)

( ) ( ) ( ) ,
( )

( ) ( ).
( )

i i i k i k i k

i
i i i i i i

i

i
i i i i

i

k s s s s

s s s
k s

s s
k s

   


  


 

    


    




 















 



 






                       (4.14) 

where {1,2,..., 3}k i   and {3,4,..., 2}i n  . Substituting Eqs. (4.6) and (4.13) into (2.3), we get the 

position vector of the normal curve as: 

2
1

,
1 0

1 1

1
( ) ( ) ( ) ( )

( ) ( )

k
n i

i k ik
i k

s N s s B s
k s s k s


 



 

  
          

.                                         (4.15) 

Then based on the Eqs system (4.1)–(4.5), we state the following theorem: 

Theorem 4.1. Let 1: nI E    be an arclength parametrized curve in 1

nE  with nonzero curvatures. 

Then ( )s  is congruent to a normal curve if and only if 

2 3

2, 1 3,
0 0

1 1

1 1
( ) ( ) ( ) 0

( ) ( )

k k
n n

n k n n n kk k
k k

s k s s
s k s s k s

  
 

  
 

       
                  

                            (4.16) 

with ,i k  inductively defined by the system (4.14). 

Proof. If ( )s  is a normal curve, writing (4.13) for 3i n   and 2i n   in (4.5), we obtain (4.16). 

Conversely, assume that (4.16) holds. Then we define the vector 1( ) nm s E  given by 

1 1 2 2( ) ( ) ( ) ( ) ( ) ( ) ... ( ) ( )n nm s s s N s s B s s B s                                               (4.17) 

with 1

1

( )
( )

s
k s


    and 

1 2 2( ), ( ),..., ( )ns s s   
 as in (4.8), (4.9) and (4.13). If we differentiate (4.17) 

with respect to s and by using (2.2) 

2 3

2, 1 3, 2
0 0

1 1

1 1
( ) ( ) ( ) ( ) ( )

( ) ( )

k k
n n

n k n n n k nk k
k k

m s s k s s B s
s k s s k s

  
 

   
 

                              
 

                   (4.18) 
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gives ( ) 0m s  . Then ( )m s  is a constant vector and so ( )s  is congruent to a normal curve. 

Now, assume that all the curvature functions 
1 2 1, ,..., nk k k 

 of normal curve are nonzero constants. 

Then, we give the following result: 

Theorem 4.2. For odd n , there exists no normal curve with nonzero constant curvatures and for 

even ,n  every curve with nonzero constant curvatures is a normal curve in 1

nE . 

Proof. Assume that there exists a normal curve with its nonzero constant curvatures 
1 2 1, ,..., nk k k 

. 

From (4.1), (4.2), (4.3) and (4.4), it follows that 

1
1

1

2
2 1 3

1 3

, 0,

, 0.
.

k

k

k k


 

  

  

  

 

For {4,5,..., 2}i n   Eq. (4.4) gives 

 2
1 2 1 1

2

( ) ( ) ( ) ( ) .
( )

i
i i i i i

i

s k s s s
k s


   

   



   

By induction we obtain that 

2 1 0,m                                                                          (4.19) 

2
1

2 1 1

2 1
1

m

i
i

m m

i
i

k

k

  







 



.                                                                  (4.20) 

For odd n  , with the help of (4.19) and (4.20), Eq.  (4.16) takes the following form 

2 4 3 1
1

1 3 4 2

...
0.

...

n n
n

n n

k k k k

k k k k
   

 

  

However, since we assume all curvatures to be nonzero, this leads to a contradiction. For even n , 

according to Theorem 4.1., since the curvature functions obviously satisfy the relation (4.16) then 

( )s  is congruent to normal curve. Thus the proof is completed. 

Example 4.1. A curve 1: nI E    which has all its curvatures constant is parametrized by 

1 1 1 1 2 2 2 2( ) ( cosh( ), sinh( ), cos( ), sin( ),..., cos( ), sin( ))t t t ts a b s a b s a b s a b s a b s a b s                     (4.21) 

for even 2n t  and by 

1 1 1 1 2 2 2 2( ) ( cosh( ), sinh( ), cos( ), sin( ),..., cos( ), sin( ), )t t t ts a b s a b s a b s a b s a b s a b s cs                 (4.22) 

for odd 2 1n t  . Here , ,i ic a b   and all 
ib  are different numbers for {1,2,..., }i t . 
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From the parametrization (4.21), for even ,n  we obtain the derivative of ,   is zero. Then 

, tancons t    and thus   lies on some hyperquadrics in 1

nE . This means that in every point the 

position vector of the curve lies in the orthogonal complement of the tangent vector T . So the curve 

  is a normal curve. Also we can easily show that the curve   with all its curvatures constant is a 

normal curve since ( ), ( ) 0s T s  . From the parametrization (4.22), for odd ,n  the curve   with all 

its curvatures are constant is not a normal curve since ( ), ( ) 0s T s  . 

Theorem 4.3. Let ( )s   be an arclength parametrized curve, lying fully in the n -dimensional 

Lorentzian space with nonzero curvatures. Then   is a normal curve if and only if   lies in some 

hyperquadrics in 1

nE . 

Proof. First assume that ( )s  is congruent to a normal curve. It follows, by straightforward 

calculations using Theorem 4.1., we obtain 

2 3

1 1 2 1 2 1

2 2
4 3 2 3 2

3 1 2 1 3 1 2 1

1 1 1 1 1 1
2 2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )1 1 1 1 1 1
2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

k s k s k s k s k s k s

k s k s

k s k s k s k s k s k s k s k s

 

    

                          
  

                        

2 , ,
0 0

1 1

2 2

2, 2,
0 0

1 1

1 1
... 2

( ) ( )

1 1
... 2

( ) ( )

k k
i i

i i k i kk k
k k

k k
n n

n n k n kk k
k k

s k s s k s

s k s s k s

  

  


 

 

 
 

       
          

      
                

      
              

0.





 

On the other hand, the previous equation is differential of the equation 

2
2

2

2
2 3 4 3 2

1 2 1 3 1 2 1

2

2 , 2,
0 0

1 1

( )1 1 1 1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1
... ...

( ) ( )

k k
i

i i k n n kk k
k k

k s

k s k s k s k s k s k s k s

s k s s k s

    

    
 

                                          

     
             

2
2

, .
n

r r
 

   
 

                  (4.23) 

Then using (4.6)–(4.13) in (4.17), we get ( ) , ( )s m s m r    . Consequently ( )s  lies in some 

hyperquadrics in 1

nE .  

Conversely, if ( )s  lies in some hyperquadrics in 1

nE , then ( ) , ( ) ,s m s m r    r  where 

1( ) nm s E  is a constant vector. By taking the derivative of the previous equation with respect to s , 

we obtain ( ) , ( ) 0,s m T s    which means that ( )s  is a normal curve. 

Theorem 4.4. Let 1: nI E    be an arclength parametrized normal curve in 1

nE  with nonzero 

curvatures. Then the following statements are hold: 
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i. The normal component and the first binormal component of the position vector of the curve 

are given by 

1 2 31 2
1

1 2 1

1
( ), ( ) , ( ), ( ) .

( ) ( ) ( )
s N s s B s

k s k s k s

   
 

 
     

 
                            (4.24) 

ii. The first binormal component and the second binormal component of the position vector of 

the curve are given by 

1 2 3
1

2 1

1 3 4 2
2 3 2

3 1 2 1

1
( ), ( ) ,

( ) ( )

( ) 1 1
( ), ( ) .

( ) ( ) ( ) ( )

s B s
k s k s

k s
s B s

k s k s k s k s

  


  
  

 
   

 

             
 

                                      (4.25) 

iii. The second binormal component and the third binormal component of the position vector of 

the curve are given by 

1 3 4 2
2 3 2

3 1 2 1

3
2

2 1

1 5
3

4

2
4 2 3

3 1 2 1

( ) 1 1
( ), ( ) ,

( ) ( ) ( ) ( )

( ) 1

( ) ( )

( ), ( )
( )

( )1 1 1

( ) ( ) ( ) ( )

k s
s B s

k s k s k s k s

k s

k s k s

s B s
k s

k s

k s k s k s k s

  
  



 


  

             
 

   
   

 

 
                   

,

 
 
 
 
 

 
 
 
 

  

                       (4.26) 

iv. The jth binormal component and the (j+1)th binormal component of the position vector of 

the curve are given by 

2 ,
0

1

1

1 3 1,
0

1

1
( ), ( ) ( ) ,

( )

1
( ), ( ) ( )

( )

kj

j j j k k
k

kj

j j j k k
k

s B s s
s k s

s B s s
s k s

  

  






  


 
   

  

 
   

  

                                             (4.27) 

where 3 3j n    and ,j k  is introduced by (4.14). 

v. The distance function ( ) ( )s s   satisfies 2 ( )s a   for some .a  

vi. The distance function ( ) ( )s s   is constant and the binormal component ( )B s  of the 

position vector of the curve has nonconstant length. 

Conversely, if ( )s  is an arclength parametrized curve with nonzero curvatures and one of the 

above statements holds in 1

nE , then ( )s  is congruent to a normal curve. 
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Proof. To prove (i), (ii), (iii) and (iv), assume that ( )s  is an arclength parametrized normal curve in 

1

nE . Taking the inner product of the two sides (4.15) with 1 2 1( ), ( ), ( ),..., ( ), ( )j jN s B s B s B s B s  where 

3 3j n    respectively, we obtain the statements (i), (ii), (iii), (iv). 

Conversely, assume that (i) is given. Differentiating 1 2

1

( ), ( )
( )

s N s
k s

 
    with respect to s  and 

by using (2.2), we get ( ), ( ) 0,s T s  which means ( )s  is congruent to a normal curve. Similarly 

since the statements (ii), (iii), (iv) holds, then ( )s  is a normal curve. 

To prove (v), assume that ( )s  is an arclength parametrized normal curve. Then 

multiplying (4.3), (4.4), and (4.5) with 
2 ( )i i s 

 where {1,2,..., 2}i n   respectively, 

3 1 1 3 3 2 2

1 1

2 2 1 1 2 2 1

2 1 3 2

1 1
( )( ( ) ( )) ,

( ) ( )

( )( ( ) ( ) ( ) ( )) 0,

( )( ( ) ( ) ( )) 0

i i i i i i i i i

n n n n n n

s k s s
k s k s

s k s s k s s

s k s s s

     

      

    

      

   

  
      

  

  

 

 

and adding these equations we get 

2
2

2

2 2
1

1

1

( )

n

i i
i

a
k s

  





 
    

 
 for .a  From (4.15), we have 

2
2 2 2

2 2
1

( ) ( ), ( ) .
n

i i
i

s s s a      





     

Conversely, differentiating 2 ( ) ( ), ( )s s s a     with respect to s, we get ( ), ( ) 0.s T s   

Thus, ( )s  is congruent to a normal curve. 

vi. Decompose the position vector of a curve ( )s  in its normal and binormal component, i.e., 

2( ) ( ), ( ) ( ) ( ).Bs s N s N s s      

From 
2

1

( ) ( ) ( )
n

B

i i
i

s s B s 




  , we have 

2

2

1

1
( )

( )

B s a
k s

 
 

   
 

. Thus, the binormal component has 

nonconstant length. The distance function   is proved in (v). 

Conversely since 
22 ( ) ( )s s   is constant, ( ), ( ) 0.s T s   Hence, ( )s  is congruent to a 

normal curve. 

Lemma 4.1. Let 1: nI E    be an arclength parametrized curve with non-null vector fields 

1 2 2, , ,..., ,nN B B B   lying fully in 1

nE , then ( )s  is congruent to a normal curve if and only if there 

exists a differentiable function ( )f s  such that 

2

1 2, 1
0

1

3

1 3,
0

1

1
( ) ( ) ( ) ( ) ,

( )

1
'( ) ( ) ( )

( )

k
n

n n k n k
k

k
n

n n n k k
k

f s k s s k s
s k s

f s k s s
s k s



 



  




 


  
       

  
        

                                        (4.28) 
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Applying similar methods as in [19–21] together with Lemma 4.1., we obtain the following theorems 

for normal curves in 1

nE . 

Theorem 4.5. Let ( )s  be an arclength parametrized curve in 1

nE  with nonzero curvatures and 

timelike principal binormal 
2nB 
. Then ( )s  is congruent to a normal curve if and only if there exist 

constants 
0 0,a b   such that 

0 1 12

1 1 1

0 1 12

1 1

'( ) ( ) ( )
( ) ( ) ( ) sinh ( ) sinh ( )

( ) ( ) ( )

( ) ( )
( ) ( ) ( ) cosh ( ) cosh ( )

( ) ( )

n n

n n n

n n

n n

f s f s f s
a k s f s k s s ds s

k s k s k s

f s f s
b k s f s k s s ds s

k s k s

 

 

 

  

 

 

    
     

   

    
     

   

                  (4.29) 

where 
10
( ) ( ).

s

nk s ds s   

Proof. Let ( )s  is congruent to a normal curve with 1n   . According to Lemma 4.1., there exists 

a differentiable function ( )f s  such that the relation (4.28) holds. Let us determine the differentiable 

functions ( ), ( )s a s  and ( )b s  by 

10
( ) ( )

s

ns k s ds   ,                                                                           (4.30) 

1

1 12

1 1

( )
( ) sinh ( ) ( )cosh ( )

( )

( ) ( )
( ) ( ) ( ) sinh ( ) ,

( ) ( )

n

n n

n n

f s
a s s f s s

k s

f s f s
k s f s k s s ds

k s k s

 





 

 


  

  
    

 

                                      (4.31) 

1

1 12

1 1

( )
( ) cosh ( ) ( )sinh ( )

( )

( ) ( )
( ) ( ) ( ) cosh ( ) .

( ) ( )

n

n n

n n

f s
b s s f s s

k s

f s f s
k s f s k s s ds

k s k s

 





 

 


  

  
    

 

                                    (4.32) 

By using (4.28), we find ( ) 0a s   and ( ) 0b s  . Thus 
0( )a s a  and 

0( ) .b s b   Multiplying (4.31) 

and (4.32) respectively with sinh ( )s  and cosh ( )s , adding the obtained equations, we get (4.29). 

Conversely let 
0 0,a b   are constants such that the relation (4.29) holds. Let us define the 

differentiable function ( )f s  by 

2

2, 1
0

1 1

1 1
( ) ( ) ( )

( ) ( )

k
n

n k n k
k

n

f s s k s
k s s k s




 




  
   

   
. 

By the derivative of (4.29) with respect to s , we obtain 

0 1 12

1 1

0 1 12

1 1

( ) ( )
( ) ( ) ( ) ( ) sinh ( ) cosh ( )

( ) ( )

( ) ( )
( ) ( ) ( ) cosh ( ) sinh ( ).

( ) ( )

n n

n n

n n

n n

f s f s
f s a k s f s k s s ds s

k s k s

f s f s
b k s f s k s s ds s

k s k s
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As a result of this and (4.29), we obtain 
3

3, 1
0

1

1
( ) ( ) ( )

( )

k
n

n k nk
k

f s s k s
s k s




 


  
        

. Thus Lemma 4.1. 

implies that ( )s  is congruent to a normal curve. 

For the curves with spacelike principal binormal 
2nB 
, we obtain the following theorem, which 

can be proved in a similar way as Theorem 4.5. 

Theorem 4.6. Let ( )s  be an arclength parametrized curve in 1

nE  with nonzero curvatures and 

spacelike principal binormal 
2nB 
. Then ( )s  is congruent to a normal curve if and only if there 

exist constants 
0 0,a b   such that 

1 1 02

1 1 1

1 1 02

1 1

'( ) ( ) ( )
( ) ( ) ( ) cos ( ) cos ( )

( ) ( ) ( )

( ) ( )
( ) ( ) ( ) sin ( ) sin ( ).

( ) ( )

n n

n n n

n n

n n

f s f s f s
k s f s k s s ds a s

k s k s k s

f s f s
k s f s k s s ds b s

k s k s

 

 

 

  

 

 

    
     

   

    
     

   

                   (4.33) 

5. Conclusion 

This study gives normal curves and examines some characterizations of normal curves in 

Lorentzian n -space 1

nE . We determine necessary and sufficient condition for a null and non-null 

curve to be congruent to a normal curve in Lorentzian n -space 1

nE . We characterize normal curves 

in terms of their curvature functions. The results of this study may also be developed to other 

different spaces. 
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