Research article

Completely monotonic integer degrees for a class of special functions

  • Received: 14 January 2020 Accepted: 26 March 2020 Published: 07 April 2020
  • MSC : 26A48, 33B15, 44A10

  • Let $f_{n}(x)$ $\left(n = 0, 1, \cdots\right)$ be the remainders for the asymptotic formula of $\ln\Gamma (x)$ and $R_{n}(x) = \left(-1\right)^{n}f_{n}(x)$. This paper introduced the concept of completely monotonic integer degree and discussed the ones for the functions $\left(-1\right)^{m}R_{n}^{(m)}(x)$, then demonstrated the correctness of the existing conjectures by using a elementary simple method. Finally, we propose some operational conjectures which involve the completely monotonic integer degrees for the functions $\left(-1\right) ^{m}R_{n}^{(m)}(x)$ for $m = 0, 1, 2, \cdots$.

    Citation: Ling Zhu. Completely monotonic integer degrees for a class of special functions[J]. AIMS Mathematics, 2020, 5(4): 3456-3471. doi: 10.3934/math.2020224

    Related Papers:

  • Let $f_{n}(x)$ $\left(n = 0, 1, \cdots\right)$ be the remainders for the asymptotic formula of $\ln\Gamma (x)$ and $R_{n}(x) = \left(-1\right)^{n}f_{n}(x)$. This paper introduced the concept of completely monotonic integer degree and discussed the ones for the functions $\left(-1\right)^{m}R_{n}^{(m)}(x)$, then demonstrated the correctness of the existing conjectures by using a elementary simple method. Finally, we propose some operational conjectures which involve the completely monotonic integer degrees for the functions $\left(-1\right) ^{m}R_{n}^{(m)}(x)$ for $m = 0, 1, 2, \cdots$.


    加载中


    [1] I. Abbas Baloch, Y. M. Chu, Petrović-type inequalities for harmonic h-convex functions, J. Funct. Space, 2020 (2020), 3075390.
    [2] M. Adil Khan, S. Begum, Y. Khurshid, et al. Ostrowski type inequalities involving conformable fractional integrals, J. Inequal. Appl., 2018 (2018), 70.
    [3] M. Adil Khan, Y.-M. Chu, A. Kashuri, et al. Conformable fractional integrals versions of Hermite-Hadamard inequalities and their generalizations, J. Funct. Space, 2018 (2018), 6928130.
    [4] M. Adil Khan, M. Hanif, Z. A. Khan, et al. Association of Jensen's inequality for s-convex function with Csiszár divergence, J. Inequal. Appl., 2019 (2019), 162.
    [5] M. Adil Khan, A. Iqbal, M. Suleman, et al. Hermite-Hadamard type inequalities for fractional integrals via Green's function, J. Inequal. Appl., 2018 (2018), 161.
    [6] M. Adil Khan, Y. Khurshid, T.-S. Du, et al. Generalization of Hermite-Hadamard type inequalities via conformable fractional integrals, J. Funct. Space, 2018 (2018), 5357463.
    [7] M. Adil Khan, N. Mohammad, E. R. Nwaeze, et al. Quantum Hermite-Hadamard inequality by means of a Green function, Adv. Difference Equ., 2020 (2020), 99. doi: 10.1186/s13662-020-02559-3
    [8] M. Adil Khan, S.-H. Wu, H. Ullah, et al. Discrete majorization type inequalities for convex functions on rectangles, J. Inequal. Appl., 2019 (2019), 16.
    [9] M. Adil Khan, S. Zaheer Ullah, Y. M. Chu, The concept of coordinate strongly convex functions and related inequalities, RACSAM, 113 (2019), 2235-2251. doi: 10.1007/s13398-018-0615-8
    [10] H. Alzer, On some inequalities for the gamma and psi functions, Math. Comput., 66 (1997), 373-389. doi: 10.1090/S0025-5718-97-00807-7
    [11] Y.-M. Chu, M. Adil Khan, T. Ali, et al. Inequalities for α-fractional differentiable functions, J. Inequal. Appl., 2017 (2017), 93.
    [12] Y.-M. Chu, Y.-F. Qiu, M.-K. Wang, Hölder mean inequalities for the complete elliptic integrals, Integ. Transf. Spec. Funct., 23 (2012), 521-527. doi: 10.1080/10652469.2011.609482
    [13] Y.-M. Chu, M.-K. Wang, S.-L. Qiu, Optimal combinations bounds of root-square and arithmetic means for Toader mean, Proc. Indian Acad. Sci. Math. Sci., 122 (2012), 41-51. doi: 10.1007/s12044-012-0062-y
    [14] Y.-M. Chu, M.-K. Wang, S.-L. Qiu, et al. Bounds for complete elliptic integrals of the second kind with applications, Comput. Math. Appl., 63 (2012), 1177-1184. doi: 10.1016/j.camwa.2011.12.038
    [15] Y.-M. Chu, G.-D. Wang, X.-H. Zhang, The Schur multiplicative and harmonic convexities of the complete symmetric function, Math. Nachr., 284 (2011), 653-663. doi: 10.1002/mana.200810197
    [16] Y.-M. Chu, W.-F. Xia, X.-H. Zhang, The Schur concavity, Schur multiplicative and harmonic convexities of the second dual form of the Hamy symmetric function with applications, J. Multivariate Anal., 105 (2012), 412-421. doi: 10.1016/j.jmva.2011.08.004
    [17] B.-N. Guo, F. Qi, A completely monotonic function involving the tri-gamma function and with degree one, Math. Comput., 218 (2012), 9890-9897.
    [18] F. Hausdorff, Summationsmethoden und Momentfolgen I, Math. Z., 9 (1921), 74-109. doi: 10.1007/BF01378337
    [19] X.-H. He, W.-M. Qian, H.-Z. Xu, et al. Sharp power mean bounds for two Sándor-Yang means, RACSAM, 113 (2019), 2627-2638. doi: 10.1007/s13398-019-00643-2
    [20] X.-M. Hu, J.-F. Tian, Y.-M. Chu, et al. On Cauchy-Schwarz inequality for N-tuple diamond-alpha integral, J. Inequal. Appl., 2020 (2020), 8.
    [21] T.-R. Huang, B.-W. Han, X.-Y. Ma, et al. Optimal bounds for the generalized Euler-Mascheroni constant, J. Inequal. Appl., 2018 (2018), 118. doi: 10.2478/dema-2014-0012
    [22] T.-R. Huang, S.-Y. Tan, X.-Y. Ma, et al. Monotonicity properties and bounds for the complete p-elliptic integrals, J. Inequal. Appl., 2018 (2018), 239.
    [23] A. Iqbal, M. Adil Khan, S. Ullah, et al. Some new Hermite-Hadamard-type inequalities associated with conformable fractional integrals and their applications, J. Funct. Space, 2020 (2020), 9845407.
    [24] S. Khan, M. Adil Khan, Y.-M. Chu, Converses of the Jensen inequality derived from the Green functions with applications in information theory, Math. Methods Appl. Sci., 43 (2020), 2577-2587. doi: 10.1002/mma.6066
    [25] Y. Khurshid, M. Adil Khan, Y.-M. Chu, Conformable integral inequalities of the Hermite-Hadamard type in terms of GG- and GA-convexities, J. Funct. Space, 2019 (2019), 6926107.
    [26] Y. Khurshid, M. Adil Khan, Y.-M. Chu, et al. HermiteH-adamard-Fejér inequalities for conformable fractional integrals via preinvex functions, J. Funct. Space, 2019 (2019), 3146210.
    [27] S. Koumandos, H. L. Pedersen, Completely monotonic functions of positive order and asymptotic expansions of the logarithm of Barnes double gamma function and Euler's gamma function, J. Math. Anal. Appl., 355 (2009), 33-40. doi: 10.1016/j.jmaa.2009.01.042
    [28] M. A. Latif, S. Rashid, S. S. Dragomir, et al. Hermite-Hadamard type inequalities for co-ordinated convex and qausi-convex functions and their applications, J. Inequal. Appl., 2019 (2019), 317. doi: 10.1186/s13660-019-2272-7
    [29] F. Qi, A.-Q. Liu, Completely monotonic degrees for a difference between the logarithmic and psi functions, J. Comput. Appl. Math., 361 (2019), 366-371. doi: 10.1016/j.cam.2019.05.001
    [30] W.-M. Qian, Z.-Y. He, Y.-M. Chu, Approximation for the complete elliptic integral of the first kind, RACSAM, 114 (2020), 57.
    [31] W.-M. Qian, Z.-Y. He, H.-W. Zhang, et al. Sharp bounds for Neuman means in terms of two-parameter contraharmonic and arithmetic mean, J. Inequal. Appl., 2019 (2019), 168.
    [32] W.-M. Qian, H.-Z. Xu, Y.-M. Chu, Improvements of bounds for the Sándor-Yang means, J. Inequal. Appl., 2019 (2019), 73.
    [33] W.-M. Qian, Y.-Y. Yang, H.-W. Zhang, et al. Optimal two-parameter geometric and arithmetic mean bounds for the Sándor-Yang mean, J. Inequal. Appl., 2019 (2019), 287.
    [34] W.-M. Qian, X.-H. Zhang, Y.-M. Chu, Sharp bounds for the Toader-Qi mean in terms of harmonic and geometric means, J. Math. Inequal., 11 (2017), 121-127. doi: 10.7153/jmi-11-11
    [35] W.-M. Qian, W. Zhang, Y.-M. Chu, Bounding the convex combination of arithmetic and integral means in terms of one-parameter harmonic and geometric means, Miskolc Math. Notes, 20 (2019), 1157-1166. doi: 10.18514/MMN.2019.2334
    [36] S.-L. Qiu, X.-Y. Ma, Y.-M. Chu, Sharp Landen transformation inequalities for hypergeometric functions, with applications, J. Math. Anal. Appl., 474 (2019), 1306-1337. doi: 10.1016/j.jmaa.2019.02.018
    [37] S. Rafeeq, H. Kalsoom, S. Hussain, et al. Delay dynamic double integral inequalities on time scales with applications, Adv. Difference Equ., 2020 (2020), 40. doi: 10.1186/s13662-020-2516-3
    [38] S. Rashid, F. Jarad, H. Kalsoom, et al. On Pólya-Szegö and Ćebyšev type inequalities via generalized k-fractional integrals, Adv. Difference Equ., 2020 (2020), 125.
    [39] S. Rashid, M. A. Noor, K. I. Noor, et al. Ostrowski type inequalities in the sense of generalized K-fractional integral operator for exponentially convex functions, AIMS Math., 5 (2020), 2629-2645. doi: 10.3934/math.2020171
    [40] Y.-Q. Song, M. Adil Khan, S. Zaheer Ullah, et al. Integral inequalities involving strongly convex functions, J. Funct. Spaces, 2018 (2018), 6595921.
    [41] M.-K. Wang, Y.-M. Chu, Landen inequalities for a class of hypergeometric functions with applications, Math. Inequal. Appl., 21 (2018), 521-537.
    [42] M.-K. Wang, H.-H. Chu, Y.-M. Chu, Precise bounds for the weighted Hölder mean of the complete p-elliptic integrals, J. Math. Anal. Appl., 480 (2019), 123388.
    [43] M.-K. Wang, Y.-M. Chu, S.-L. Qiu, el al. Bounds for the perimeter of an ellipse, J. Approx. Theory, 164 (2012), 928-937. doi: 10.1016/j.jat.2012.03.011
    [44] M.-K. Wang, Y.-M. Chu, W. Zhang, Monotonicity and inequalities involving zero-balanced hypergeometric function, Math. Inequal. Appl., 22 (2019), 601-617.
    [45] M.-K. Wang, Y.-M. Chu, W. Zhang, Precise estimates for the solution of Ramanujan's generalized modular equation, Ramanujan J., 49 (2019), 653-668. doi: 10.1007/s11139-018-0130-8
    [46] M.-K. Wang, Z.-Y. He, Y.-M. Chu, Sharp power mean inequalities for the generalized elliptic integral of the first kind, Comput. Methods Funct. Theory, 20 (2020), 111-124. doi: 10.1007/s40315-020-00298-w
    [47] M.-K. Wang, M.-Y. Hong, Y.-F. Xu, et al. Inequalities for generalized trigonometric and hyperbolic functions with one parameter, J. Math. Inequal., 14 (2020), 1-21. doi: 10.7153/jmi-2020-14-01
    [48] M.-K. Wang, Y.-M. Li, Y.-M. Chu, Inequalities and infinite product formula for Ramanujan generalized modular equation function, Ramanujan J., 46 (2018), 189-200. doi: 10.1007/s11139-017-9888-3
    [49] B. Wang, C.-L. Luo, S.-H. Li, et al. Sharp one-parameter geometric and quadratic means bounds for the Sándor-Yang means, RACSAM, 114 (2020), 7. doi: 10.1007/s13398-019-00734-0
    [50] J.-L. Wang, W.-M. Qian, Z.-Y. He, et al. On approximating the Toader mean by other bivariate means, J. Funct. Spaces, 2019 (2019), 6082413.
    [51] M.-K. Wang, S.-L. Qiu, Y.-M. Chu, Infinite series formula for Hübner upper bound function with applications to Hersch-Pfluger distortion function, Math. Inequal. Appl., 21 (2018), 629-648.
    [52] M.-K. Wang, S.-L. Qiu, Y.-M. Chu, et al. Generalized Hersch-Pfluger distortion function and complete elliptic integrals, J. Math. Anal. Appl., 385 (2012), 221-229. doi: 10.1016/j.jmaa.2011.06.039
    [53] M.-K. Wang, W. Zhang, Y.-M. Chu, Monotonicity, convexity and inequalities involving the generalized elliptic integrals, Acta Math. Sci., 39 (2019), 1440-1450. doi: 10.1007/s10473-019-0520-z
    [54] D. V. Widder, Necessary and sufficient conditions for the representation of a function as a Laplace integral, Trans. Amer. Math. Soc., 33 (1931), 851-892. doi: 10.1090/S0002-9947-1931-1501621-6
    [55] S.-H. Wu, Y.-M. Chu, Schur m-power convexity of generalized geometric Bonferroni mean involving three parameters, J. Inequal. Appl., 2019 (2019), 57.
    [56] H.-Z. Xu, Y.-M. Chu, W.-M. Qian, Sharp bounds for the Sándor-Yang means in terms of arithmetic and contra-harmonic means, J. Inequal. Appl., 2018 (2018), 127.
    [57] Z.-H. Yang, Approximations for certain hyperbolic functions by partial sums of their Taylor series and completely monotonic functions related to gamma function, J. Math. Anal. Appl., 441 (2016), 549-564. doi: 10.1016/j.jmaa.2016.04.029
    [58] Z.-H. Yang, Y.-M. Chu, W. Zhang, High accuracy asymptotic bounds for the complete elliptic integral of the second kind, Appl. Math. Comput., 348 (2019), 552-564.
    [59] Z.-H. Yang, W.-M. Qian, Y.-M. Chu, Monotonicity properties and bounds involving the complete elliptic integrals of the first kind, Math. Inequal. Appl., 21 (2018), 1185-1199.
    [60] Z.-H. Yang, W.-M. Qian, Y.-M. Chu, et al. On approximating the error function, Math. Inequal. Appl., 21 (2018), 469-479.
    [61] Z.-H. Yang, W.-M. Qian, Y.-M. Chu, et al. On approximating the arithmetic-geometric mean and complete elliptic integral of the first kind, J. Math. Anal. Appl., 462 (2018), 1714-1726. doi: 10.1016/j.jmaa.2018.03.005
    [62] Z.-H. Yang, W.-M. Qian, W. Zhang, et al. Notes on the complete elliptic integral of the first kind, Math. Inequal. Appl., 23 (2020), 77-93.
    [63] S. Zaheer Ullah, M. Adil Khan, Y.-M. Chu, Majorization theorems for strongly convex functions, J. Inequal. Appl., 2019 (2019), 58.
    [64] S. Zaheer Ullah, M. Adil Khan, Y.-M. Chu, A note on generalized convex functions, J. Inequal. Appl., 2019 (2019), 291.
    [65] S. Zaheer Ullah, M. Adil Khan, Z. A. Khan, et al. Integral majorization type inequalities for the functions in the sense of strong convexity, J. Funct. Spaces, 2019 (2019), 9487823.
    [66] T.-H. Zhao, Y.-M. Chu, H. Wang, Logarithmically complete monotonicity properties relating to the gamma function, Abstr. Appl. Anal., 2011 (2011), 896483.
    [67] T.-H. Zhao, L. Shi, Y.-M. Chu, Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means, RACSAM, 2020 (114), 96.
    [68] T.-H. Zhao, M.-K. Wang, W. Zhang, et al. Quadratic transformation inequalities for Gaussian hypergeometric function, J. Inequal. Appl., 2018 (2018), 251.
    [69] T.-H. Zhao, B.-C. Zhou, M.-K. Wang, et al. On approximating the quasi-arithmetic mean, J. Inequal. Appl., 2019 (2019), 42.
    [70] L. Zhu, A class of strongly completely monotonic functions related to gamma function, J. Comput. Appl. Math., 367 (2020), 112469.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3097) PDF downloads(303) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog