Citation: Mohsan Raza, Wasim Ul Haq, Jin-Lin Liu, Saddaf Noreen. Regions of variability for a subclass of analytic functions[J]. AIMS Mathematics, 2020, 5(4): 3365-3377. doi: 10.3934/math.2020217
[1] | O. P. Ahuja, H. Silverman, A survey on spiral-like and related function classes, Math. Chronicle, 20 (1991), 39-66. |
[2] | J. Becker, Ch. Pommerenke, Schlichtheitskriterien und Jordangebiete, J. Reine Angew. Math., 354 (1984), 74-94. |
[3] | J. H. Choi, Y. C. Kim, S. Ponnusamy, et al. Norm estimates for the Alexander transforms of convex functions of order alpha, J. Math. Anal. Appl., 303 (2005), 661-668. doi: 10.1016/j.jmaa.2004.08.066 |
[4] | S. Dineen, The Schwarz lemma, Oxford Math. Monogr., Clarendon Press Oxford, 1989. |
[5] | P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften, New York, Berlin, Heidelberg, Tokyo, Springer-Verlag, 1983. |
[6] | A. W. Goodman, Univalent Functions, Vols. I and II, Mariner Publishing Co. Tampa, Florida, 1983. |
[7] | W. U. Haq, Variability regions for Janowski convex functions, Complex Var. Elliptic Equ., 59 (2014), 355-361. doi: 10.1080/17476933.2012.725164 |
[8] | J. Janowski, Some extremal problems for certain families of analytic functions I, Ann. Polon. Math., 28 (1973), 297-326. doi: 10.4064/ap-28-3-297-326 |
[9] | Y. C. Kim, S. Ponnusamy, T. Sugawa, Mapping properties of nonlinear integral operators and pre-Schwarzian derivatives, J. Math. Anal. Appl., 299 (2004), 433-447. doi: 10.1016/j.jmaa.2004.03.081 |
[10] | Y. C. Kim, T. Sugawa, Correspondence between spirallike functions and starlike functions, Math. Nach., 285 (2012), 322-331. doi: 10.1002/mana.201010020 |
[11] | S. Ponnusamy, A. Vasudevarao, Regions of variability for functions with positive real part, Ann. Polon. Math., 99 (2010), 225-245. doi: 10.4064/ap99-3-2 |
[12] | S. Ponnusamy, A. Vasudevarao, Region of variability of two subclasses of univalent functions, J. Math. Anal. Appl., 332 (2007) 1323-1334. |
[13] | S. Ponnusamy, A. Vasudevarao, M. Vuorinen, Region of variability for certain classes of univalent functions satisfying differential inequalities, Complex var. Elliptic Equ., 54 (2009), 899-922. doi: 10.1080/17476930802657616 |
[14] | S. Ponnusamy, A. Vasudevarao, H. Yanagihara, Region of variability for close-to-convex functions, Complex Var. Elliptic Equ., 53 (2008), 709-716. doi: 10.1080/17476930801996346 |
[15] | S. Ponnusamy, A. Vasudevarao, H. Yanagihara, Region of variability of univalent functions f (z) for which zf'(z) is spirallike, Houston J. Math., 34 (2008), 1037-1048. |
[16] | M. Raza, W. U. Haq, S. Noreen, Regions of Variability for Janowski Functions, Miskloc Math. Notes, 16 (2015), 1117-1127. doi: 10.18514/MMN.2015.1344 |
[17] | M. S. Robertson, Univalent functions f (z) for which zf'(z) is spirallike, Mich. Math. J., 16 (1969), 97-101. |
[18] | A. Y. Sen, Y. Polatoglu, M. Aydogan, Distortion theorem and the radius of convexity for Janowski-Robertson functions, Stud. Univ. Babeş-Bolyai Math., 57 (2012), 291-294. |
[19] | L. Spacek, Contribution a la theorie des fonctions univalentes (in Czech), Časopis Pest. Mat., 62 (1933), 12-19. doi: 10.21136/CPMF.1933.121951 |
[20] | S. Yamashita, Norm estimates for function starlike or convex of order alpha, Hokkaido Math. J., 28 (1999), 217-230. doi: 10.14492/hokmj/1351001086 |
[21] | H. Yanagihara, Regions of variability for convex function, Math. Nach., 279 (2006), 1723-1730. doi: 10.1002/mana.200310449 |
[22] | H. Yanagihara, Regions of variability for functions of bounded derivatives, Kodai Math. J., 28 (2005), 452-462. doi: 10.2996/kmj/1123767023 |