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Abstract: Let A ∈ C, B ∈ [−1, 0) and α ∈
(
−π2 ,

π
2

)
. Then Cα [A, B] denotes the class of analytic

functions f in the open unit disc with f (0) = 0 = f ′ (0) − 1 such that

eiα

(
1 +

z f ′′ (z)
f ′ (z)

)
= cosαp (z) + i sinα,

with
p (z) =

1 + Aw (z)
1 + Bw (z)

,

where w (0) = 0 and |w (z)| < 1. Region of variability problems provides accurate information about
a class of univalent functions than classical growth distortion and rotation theorems. In this article
we find the regions of variability Vλ (z0, A, B) for log f ′ (z0) when f ranges over the class Cα [λ, A, B]
defined as

Cα [λ, A, B] =
{
f ∈ Cα [A, B] : f ′′ (0) = (A − B) e−iα cosα

}
for any fixed z0 ∈ E and λ ∈ E. As a consequence, the regions of variability are also illustrated
graphically for different sets of parameters.
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1. Introduction

Let A be the class of functions f analytic in the open unit disc E = {z : |z| < 1, z ∈ C} with the
usual normalization f (0) = f ′(0) − 1 = 0 and S be the subclass of A consisting of functions which are
univalent in E. Consider that A as a topological vector space endowed with the topology of uniform
convergence over a compact subsets of E. Also let B denote the class of analytic functions w in E such
that |w(z)| < 1 and w(0) = 0. A function f is said to be subordinate to a function g written as f ≺ g,
if there exists a Schwarz function w ∈ B such that f (z) = g (w(z)). In particular if g is univalent in E,
then f (0) = g (0) and f (E) ⊂ g (E).

A set D in the complex plane is said to be starlike with respect to a point w0, an interior point of
D if the line segment with initial point w0 lies entirely in D. If a function f maps E onto a domain
that is starlike with respect to w0, then we say that f is starlike with respect to w0. In the special case
that f is starlike function with respect to origin. The class of univalent starlike functions with respect
to origin is denoted by S ∗. The class of starlike functions with respect to the origin have been studied
extensively, for some details [5, 6].

In 1933 Spacek [19] extended the idea of starlike functions by using the logarithmic spirals instead
of line segment. Let α ∈

(
−π2 ,

π
2

)
. The curve γα : t → exp

(
teiα

)
, t ∈ R and its rotation eiθγα (t) ,

θ ∈ R are called α-spirals. A domain D ⊂ C is said to be α-spirallike with respect to the origin if the
spiral with initial point 0 to every point in D lies in D. A function f ∈ A is spirallike if it maps E onto
a domain which is spirallike with respect to 0. The class of spirallike functions is denoted by S α. In
otherwise

S α =

{
f ∈ A : Re

(
eiα z f ′ (z)

f (z)

)
> 0, z ∈ E

}
.

Kim and Sugawa [10] introduced the notion of α-argument. Consider that θ = argα w with w ∈
eiθγα (R) . By using the α-argument, it is clear that f ∈ S α if and only if

∂

∂θ

(
argα f (reiθ)

)
> 0 (θ ∈ R, 0 < r < 1).

For some details about the spirallike functions [1, 5, 6]. A function f with f (0) = f ′(0) − 1 = 0 is said
to be Robertson functions if

Re
{

eiα

(
1 +

z f ′′ (z)
f ′ (z)

)}
> 0, z ∈ E.

The class of Robertson functions is denoted by Cα and defined by Robertson [17]. It is clear that
C0 = C, usual class of convex functions. In the view of above discussions about the spirallike functions
and Robertson functions, we have the following relation. Let f ∈ A. Then f ∈ Cα if and only if
z f ′ ∈ S α. By using the concept of Janowski [8], Sen et al. [18] studied the class Cα [A, B]. Let A ∈ C,
B ∈ [−1, 0) and α ∈

(
−π2 ,

π
2

)
. Then Cα [A, B] denotes the class of analytic functions f in the open unit

disc with f (0) = 0 = f ′ (0) − 1 such that

eiα

(
1 +

z f ′′ (z)
f ′ (z)

)
= cosαp (z) + i sinα,

with
p (z) =

1 + Aw (z)
1 + Bw (z)

.
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The single-valued branch of logarithms for f ′ (z) when f ∈ Cα [A, B] is denoted by log f ′ (z) with
log f ′ (0) = 0.Yanagihara [21,22] determined the region of variability for the class of convex functions.
Ponnusamy et al. [13] found the region of variability for some subclasses of univalent functions. For
some work on region of variability, [7, 11–16] and references therein.

Using the Herglotz representation for Janowski functions, it can be seen that for f ∈ Cα [A, B] there
exists a unique positive unit measure µ in (−π, π] such that

1 +
z f ′′ (z)
f ′ (z)

= e−iα

cosα

π∫
−π

1 + Aze−it

1 + Bze−it dµ (t) + i sinα

 . (1.1)

This shows that

log f ′ (z) =
A − B

B
e−iα cosα

π∫
−π

Be−it

1 + Bze−it dµ (t) . (1.2)

It follows from (1.2) that for each fixed z0 ∈ E, the region of variability is the set Vλ [z0, A, B] given as{A − B
B

e−iα cosα log (1 + Bz) : |z| ≤ |z0|

}
.

Let

p f (z) = eiα

(
1 +

z f ′′ (z)
f ′ (z)

)
.

Then there exists a Schwarz function w ∈ B, such that

w (z) =
p f (z) − eiα

A cosα + iB sinα − Bp f (z)
. (1.3)

Let f ∈ Cα [A, B]. Then by applying Schwarz lemma, that is
∣∣∣w′p (0)

∣∣∣ ≤ 1 [4], we get

| f ′′ (0)| = (A − B) cosα
∣∣∣ω′f (0)

∣∣∣ ≤ (A − B) cosα,

for some λ ∈ E, Now for λ ∈ E = {z ∈ C : |z| ≤ 1} and z0 ∈ E, we introduce

Cα [λ, A, B] =
{
f ∈ Cα [A, B] : f ′′ (0) = λ (A − B) e−iα cosα

}
and

Vλ (z0, A, B) =
{
log f ′ (z0) : f ∈ Cα [λ, A, B]

}
.

The aim of this article is to investigate the region of variability Vλ (z0, A, B) for the class
f ∈ Cα [λ, A, B].

2. Basic properties of Vλ (z0, A, B)

We start our investigations by studying certain general properties of the set Vλ (z0, A, B) such as
compactness and convexity.
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Proposition 2.1. (i) Vλ (z0, A, B) is a compact subset of C.
(ii) Vλ (z0, A, B) is a convex subset of C.
(iii) If |λ| = 1 or z0 = 0, then Vλ (z0, A, B) =

{
A−B

B e−iα cosα log(1 + Bλz0)
}

and if |λ| < 1 and z0 , 0,
then the set Vλ (z0, A, B) has e−iα cosα log(1 + Bλz0) an interior point.

Proof. (i) Since Cα [λ, A, B] is a compact subset of C, therefore Vλ (z0, A, B) is also compact.
(ii) Let f1, f2 ∈ Cα [λ, A, B] . Then for 0 ≤ t ≤ 1, the function

f (z) =

z∫
0

( f1 (ς))1−t ( f2 (ς))t dς

is also in Cα [λ, A, B] , therefore Vλ (z0, A, B) is convex because log f ′ (z) = (1 − t) log f ′1 (z)+t log f ′2 (z) ,
t ∈ [0, 1].

(iii) Since |λ| = |w′f (0)| = 1, then from Schwarz lemma, we obtain w f (z) = λz, which yields
p(z) = 1+λAz

1+λBz . This implies that

log f ′ (z) =
A − B

B
e−iα cosα log(1 + Bλz0).

Therefore
Vλ (z0, A, B) =

{A − B
B

e−iα cosα log(1 + Bλz0)
}
.

This also trivially holds true when z0 = 0. For λ ∈ E and α ∈ E, set

δ(z, λ) =
z + λ

1 + λz
,

Fa,λ (z) =

z∫
0

exp

ς2∫
0

e−iα cosα (A − B) δ(aς1, λ)
1 + Bς1δ(aς1, λ))

dς1

 dς2, z ∈ E. (2.1)

Then Fa,λ (z) is in Cα [λ, A, B] and w f (z) = zδ(az, λ). For fixed λ ∈ E and z0 ∈ E\{0} the function

E 3 a 7→ log F′a,λ (z) =

z0∫
0

e−iα cosα (A − B) (aς + λ)

1 +
(
aλ + Bλ

)
ς + aBς2

dς

is a non-constant analytic function of a ∈ E, and therefore is an open mapping. Hence log F′0,λ (z) ={
A−B

B e−iα cosα log(1 + Bλz0)
}

is an interior point of
{
log F′a,λ (z) : a ∈ E

}
⊂ Vλ (z0, A, B). �

Keeping in view the above proposition, it is sufficient to find Vλ (z0, A, B) for 0 ≤ λ < 1 and
z0 ∈ E\{0}.

3. Main results

In this section, we state and prove some results which are needed in the proof of our main theorem.
In the following proposition, we prove that for f ∈ Cα [λ, A, B] , the ratio f ′′ (z) / f ′ (z) is contained

in a closed disc with center q (z, λ) and radius r (z, λ) .
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Proposition 3.1. For Cα [λ, A, B], we have∣∣∣∣∣ f ′′ (z)
f ′ (z)

− q (z, λ)
∣∣∣∣∣ ≤ r (z, λ) , (3.1)

where

q (z, λ) =
D (z, λ) + |z|2 |τ (z, λ)|2 E (z, λ)

1 − |z|2 |τ (z, λ)|2
,

r (z, λ) =
|z| |τ (z, λ)| |D (z, λ) + E (z, λ)|

1 − |z|2 |τ (z, λ)|2
. (3.2)

Proof. Since f ∈ Cα [λ, A, B]. Then by using Schwarz lemma for wp ∈ B with w′p (0) = λ such that∣∣∣∣∣∣∣
w f (z)

z − λ

1 − λw f (z)
z

∣∣∣∣∣∣∣ ≤ |z|. (3.3)

Now from (1.3) this can be written equivalently as∣∣∣∣∣∣∣∣
f ′′(z)
f ′(z) − D (z, λ)
f ′′(z)
f ′(z) + E (z, λ)

∣∣∣∣∣∣∣∣ ≤ |z| |τ (z, λ)| , (3.4)

where

D (z, λ) =
λe−iα (A − B) cosα

1 + Bλz
, E (z, λ) =

(B − A) e−iα cosα

λ + Bz
,

τ (z, λ) =
−λ − Bz
1 + Bλz

. (3.5)

This is equivalent to∣∣∣∣∣∣ f ′′ (z)
f ′ (z)

−
D (z, λ) + |z|2 |τ (z, λ)|2 E (z, λ)

1 − |z|2 |τ (z, λ)|2

∣∣∣∣∣∣ ≤ |z| |τ (z, λ)| |A (z, λ) + B (z, λ)|
1 − |z|2 |τ (z, λ)|2

. (3.6)

Now after simple calculations, we have

1 − |z|2 |τ (z, λ)|2 =
1 − B2 |z|4 + 2B

(
1 − |z|2

)
Reλz + |λ|2 |z|2

(
B2 − 1

)
|1 + Bλz|2

.

Also

D (z, λ) + E (z, λ) =
e−iα cosα (A − B)

(
|λ|2 − 1

)
(1 + Bλz)

(
λ + Bz

)
and

D (z, λ) + |z|2 |τ (z, λ)|2 E (z, λ) =
e−iα (A − B) cosα

{
λ
(
1 − |z|2

)
+ Bz

(
|λ|2 − |z|2

)}
|1 + Bλz|2

.
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By setting

q (z, λ) =
D (z, λ) + |z|2 |τ (z, λ)|2 E (z, λ)

1 − |z|2 |τ (z, λ)|2
,

r (z, λ) =
|z| |τ (z, λ)| |D (z, λ) + E (z, λ)|

1 − |z|2 |τ (z, λ)|2
.

The relation (3.1) occurs from (3.6) and the above relations. Equality is attained in (3.1) when f =

Feiθ,λ(z), for some z ∈ E. Conversely if equality occurs in (3.1) for some z ∈ E\{0}, then equality must
hold in (3.3). Thus by Schwarz lemma there exists θ ∈ R such that w f (z) = zδ(eiθz, λ) for all z ∈ E.
This implies f = Feiθ,λ. �

Geometrically the above proposition means that the functional log f ′ lies in the closed disk centred
at q(z, λ) with radius r(z, λ).

For λ = 0, we have the following special result which gives us bounds on pre-Schwarzian norm of
locally univalent functions.

Corollary 3.2. Let f ∈ Cα [0, A, B]. Then∣∣∣∣∣∣ f ′′ (z)
f ′ (z)

−
−e−iα (A − B) cosα Bz |z|2

1 − B2 |z|4

∣∣∣∣∣∣ ≤ |z| |A − B| cosα
1 − B2 |z|4

.

Therefore (
1 − |B| |z|2

) ∣∣∣∣∣ f ′′ (z)
f ′ (z)

∣∣∣∣∣ ≤ |A − B| |z| cosα.

Since |B| ≤ 1, so (
1 − |z|2

) ∣∣∣∣∣ f ′′ (z)
f ′ (z)

∣∣∣∣∣ ≤ |A − B| |z| cosα.

The pre-Schwarzian norm for locally univalent functions is defined as

‖ f ‖ = sup
z∈E

(
1 − |z|2

) ∣∣∣∣∣ f ′′ (z)
f ′ (z)

∣∣∣∣∣ .
It is well-known that ‖ f ‖ ≤ 6, if f is univalent. Becker and Pommerenke [2] proved that if ‖ f ‖ ≤ 1, then
f is univalent in E and this bound is sharp. Yamashita [20] proved that if f is convex, then ‖ f ‖ ≤ 1.
The norm estimates for some subclasses of univalent functions are studied by many authors. For some
details [3,9]. From Corollary 3.2, it is evident that for f ′′ (0) and A = 1, B = −1, we have ‖ f ‖ ≤ 2 cosα
for Robertson functions. This result was proved by Ponnusamy et al. [15] also for α = 0, we have
‖ f ‖ ≤ 2.

In the following result, we prove that the set Vλ (z0, A, B) is contained in a closed disc with centre
Q (λ, r) and radius R (λ, r) .

Corollary 3.3. Consider the curve γ : z (t) , 0 ≤ t ≤ 1 in E with z (0) = 0 and z (1) = z0, then

Vλ (z0, A, B) ⊂ E (Q (λ, r) ,R (λ, r)) = {ω ∈ C : |ω − Q (λ, r)| ≤ R (λ, r)} ,
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with

Q (λ, r) =

1∫
0

q (z (t) , λ) z′ (t) dt,

R (λ, r) =

1∫
0

r (z (t) , λ) z′ (t) dt,

where q (z, λ) and r (z, λ) are given in Proposition 3.1.

Proof. Suppose that f ∈ Cα [λ, A, B], then from proposition 3.1, we get

∣∣∣log f ′ (z0) − Q (λ, r)
∣∣∣ =

∣∣∣∣∣∣∣∣
1∫

0

{
f ′′ (z)
f ′ (z)

− q (z (t) , λ)
}

z′ (t) dt

∣∣∣∣∣∣∣∣
≤

1∫
0

∣∣∣∣∣ f ′′ (z)
f ′ (z)

− q (z (t) , λ)
∣∣∣∣∣ |z′ (t)| dt.

Now using proposition 3.1, we get

∣∣∣log f ′ (z0) − Q (λ, r)
∣∣∣ ≤ 1∫

0

r (z (t) , λ)
∣∣∣z′ (t)∣∣∣ dt = R (λ, r) .

This shows log f ′ (z0) ∈ D (Q (λ, r) ,R (λ, r)). Hence the required result. �

We need the following lemma which ensures the existence of normalized starlike function which is
useful in the proof of next result.

Lemma 3.4. For θ ∈ R and |λ| < 1, the function

G(z) =

z∫
0

eiθζ2(
1 + (λeiθ + Bλ)ζ + Beiθζ2

)2 dζ, z ∈ E,

has zeros of order 2 at the origin and no zero elsewhere in E. Moreover, there exists a starlike
normalized univalent function G0 in E such that G = 1

2eiθG2
0.

The above lemma is due to Ponnusamy et al. [7]. In the below proposition we show that log F′eiθ,λ
(z0)

lies on the boundary of the set Vλ (z0, A, B).

Proposition 3.5. Let z0 ∈ E\ {0}. Then for θ ∈ (−π, π], we have log F′eiθ,λ
(z0) ∈ ∂Vλ (z0, A, B). Further

if log f ′ (z0) = log F
′

eiθ,λ
(z0) for f ∈ Cα [λ, A, B] , then f = Feiθ,λ.

Proof. Using 2.1, we have
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Fa,λ (z) =

z∫
0

exp

ξ2∫
0

e−iα cos (A − B) δ (aξ1, λ)
1 + Bξ1δ (aξ1, λ)

dξ1

 dξ2.

Therefore

F′′a,λ (z)

F′a,λ (z)
=

e−iα cos (A − B) δ (az, λ)
1 + Bzδ (az, λ)

=
e−iα (A − B) cosα (az + λ)

1 +
(
λa + Bλ

)
z + Baz2

.

From (3.5), it follows that

F′′a,λ (z)

F′a,λ (z)
− D (z, λ) =

e−iα (A − B) cosα
(
1 − |λ|2

)
az{

1 +
(
λa + Bλ

)
z + Baz2

}
(1 + Bzλ)

F′′a,λ (z)

F′a,λ (z)
+ E (z, λ) =

e−iα (A − B) cosα
(
|λ|2 − 1

){
1 +

(
λa + Bλ

)
z + Baz2

} (
λ + Bz

) .
Therefore

F′′a,λ (z)

F′a,λ (z)
− q (z, λ)

=
F′′a,λ (z)

F′a,λ (z)
−

D (z, λ) + |z|2 |τ (z, λ)|2 E (z, λ)
1 − |z|2 |τ (z, λ)|2

=
1

1 − |z|2 |τ (z, λ)|2

F′′a,λ (z)

F′a,λ (z)
− D (z, λ) − |z|2 |τ (z, λ)|2

F′′a,λ (z)

F′a,λ (z)
+ E (z, λ)


=

e−iα (A − B) cosα
(
1 − |λ|2

) (
1 + (λeiθ + Bλ)z + Beiθz2

){
1 − B2 |z|4 + 2B

(
1 − |z|2

)
Reλz + |λ|2 |z|2

(
B2 − 1

)} {
1 +

(
λa + Bλ

)
z + Baz2

} .
Putting a = eiθ, we get

F′′eiθ,λ
(z)

F′eiθ,λ
(z)
− q (z, λ) =

r (z, λ) eiθe−iαz
|z|

∣∣∣∣1 +
(
λeiθ + Bλ

)
z + Beiθz2

∣∣∣∣2(
1 +

(
λeiθ + Bλ

)
z + Beiθz2

)2 .

By using Lemma 3.4, we obtain

F′′eiθ,λ
(z)

F′eiθ,λ
(z)
− q(z, λ) = r(z, λ)

e−iαG′(z)
|G′(z)|

. (3.7)

Using the argument of Lemma 3.4 that G = 2−1eiθG2
0, where G0 is starlike in E with G0 (0) = G′0 (0) −

1 = 0, for any z0 ∈ E\{0} the linear segment joining 0 and G0(z0) lies entirely in G0(E). Let γ0 be the
curve defined by

γ0 : z(t) = G−1
0 (tG0(z0)) , t ∈ [0, 1].

AIMS Mathematics Volume 5, Issue 4, 3365–3377.
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Since G(z(t)) = 2−1eiθ (G0(z(t)))2 = 2−1eiθ (tG0(z0))2 = t2G(z0). Differentiation w.r.t t gives us

G′(z(t))z′(t) = 2tG(z0), t ∈ [0, 1]. (3.8)

Therefore F′′eiθ,λ
(z)

F′eiθ,λ
(z)
− q(z (t) , λ)

 z′ (t) = r(z (t) , λ)
e−iαG(z0)
|G(z0)|

|z′ (t)| .

This relation together with (3.7), we get

log F′eiθ,λ
(z) − Q (γ0, λ) =

1∫
0

F′′eiθ,λ
(z)

F′eiθ,λ
(z)
− q(z, λ)

 z′ (t) dt (3.9)

=

1∫
0

r(z(t), λ)
e−iαG′(z(t))z′(t)
|G′(z(t))z′(t)|

|z′(t)|dt

=
e−iαG(z0)
|G(z0)|

1∫
0

r(z(t), λ)|z′(t)|dt

=
e−iαG(z0)
|G(z0)|

R(λ, γ0).

This shows that log F′eiθ,λ
(z) ∈ ∂E (Q (γ0, λ) ,R (γ0, r)) , where Q(λ, γ0) and R(λ, γ0) are defined as in

Corollary 3.3. Also we have log F′eiθ,λ
(z0) ∈ Vλ (z0, A, B), therefore log F′eiθ,λ

(z0) ∈ ∂Vλ (z0, A, B).
Now we have to prove log f

′ (z0) = log F
′ (z0) for some f ∈ Cα [λ, A, B], we have

h (t) = e−iα |G (zo)|
G (zo)

{
f ′′ (z (t))
f ′ (z (t))

− q (z (t) , λ)
}

z
′

(t) (3.10)

k (t) = eiα |G (zo)|
G (zo)

{
F′′ (z (t))
F′ (z (t))

− q (z (t) , λ)
}

z
′

(t) ,

where γ0 : z(t), 0 ≤ t ≤ 1. Then the function h is continuous and

|h (t)| =
∣∣∣∣∣ f ′′ (z (t))

f ′ (z (t))
− q (z (t) , λ)

∣∣∣∣∣ ∣∣∣z′ (t)∣∣∣ .
Using Proposition 3.1, we have

|h (t)| ≤ r (z (t) , λ)
∣∣∣z′ (t)∣∣∣ .

Now using Proposition 3.1, we get |h(t)| ≤ r(z(t), λ)|z′(t)|. Further from (3.9), we have From (3.7)

and (3.8), this implies that f ′′(z)
f ′(z) =

F′′
eiθ,λ

(z)

F′
eiθ,λ

(z) on γ0. The identity theorem for analytic functions yields us

f = Feiθ,λ, z ∈ E. �
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Main theorem

In our main result, we give precise description of regions of variability for the class Cα [λ, A, B] and
show that the boundary ∂Vλ(z0, A, B) is a Jordan curve.

Theorem 3.6. Let λ ∈ E and z0 ∈ E\{0}. Then boundary ∂Vλ(z0, A, B) is the Jordan curve given by

(−π, π] 3 θ 7→ log F′eiθ,λ
(z0) =

z0∫
0

e−iα cosα (A − B) δ(aς, λ)
1 + Bςδ(aς, λ))

dς.

If log f ′ (z0) = log F′eiθ,λ
(z0) for some f ∈ Cα [λ, A, B] and θ ∈ (−π, π], then f (z) = Feiθ,λ(z).

Proof. First we have to show that the curve

(−π, π] 3 θ 7→ log F′eiθ,λ
(z0)

is simple. Let us assume that
log F′eiθ1 ,λ

(z0) = log F′eiθ2 ,λ
(z0)

for some θ1,θ2 ∈ (−π, π] with θ1 , θ2. Then the use of Proposition 3.5 yield us that F′
eiθ1 ,λ

(z0) =

F′
eiθ2 ,λ

(z0), which further gives the following relation

τ

wF
eiθ1 ,λ

(z)

z
, λ

 = τ

wF
eiθ2 ,λ

(z)

z
, λ

 .
This implies that

B(zeiθ1 + λ) + λ(1 + λeiθ1z)

1 + λeiθ1z + λB(zeiθ1 + λ)
=

B(zeiθ2 + λ) + λ(1 + λeiθ2z)

1 + λeiθ2z + λB(zeiθ2 + λ)
.

After some simplification, we obtain zeiθ1 = zeiθ2 , which leads us to a contradiction. Hence the curve
is simple. Since Vλ(z0, A, B) is compact convex subset of C and has non-empty interior, therefore the
boundary ∂Vλ(z0, A, B) is a simple closed curve. From Proposition 3.5 the curve ∂Vλ(z0, A, B) contains
the curve (−π, π] 3 θ 7→ log Feiθ,λ (z0) . Since a simple closed curve cannot contain any simple closed
curve other than itself. Thus ∂Vλ(z0, A, B) is given by (−π, π] 3 θ 7→ log F′eiθ,λ

(z0).
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Geometric view of theorem

The following figures show us the geometric view of our main theorem with various choices of
involved parameters.

�
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