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Abstract: Let A € C, B € [-1,0) and a € (—’—ZT, 7_2r) Then C, [A, B] denotes the class of analytic
functions f in the open unit disc with f(0) = 0 = f” (0) — 1 such that

i L0

/(@

) =cosap(z) +isina,

with
_1+Aw(2)

14+ Bw ()’
where w(0) = 0 and |w(z)| < 1. Region of variability problems provides accurate information about
a class of univalent functions than classical growth distortion and rotation theorems. In this article

we find the regions of variability V), (zy, A, B) for log f’ (z9) when f ranges over the class C, [4, A, B]
defined as

p ()

Co[AA,B] = {f € C,[A,B] : f” (0) = (A - B)e™ cos )

for any fixed zo € E and 1 € E. As a consequence, the regions of variability are also illustrated
graphically for different sets of parameters.
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1. Introduction

Let A be the class of functions f analytic in the open unit disc £ = {z : |z| < 1, z € C} with the
usual normalization f(0) = f’(0) — 1 = 0 and S be the subclass of A consisting of functions which are
univalent in E. Consider that A as a topological vector space endowed with the topology of uniform
convergence over a compact subsets of E. Also let 8 denote the class of analytic functions w in E such
that |[w(z)| < 1 and w(0) = 0. A function f is said to be subordinate to a function g written as f < g,
if there exists a Schwarz function w € 8 such that f (z) = g (w(z)). In particular if g is univalent in E,
then f(0) = g(0) and f (E) C g (E).

A set D in the complex plane is said to be starlike with respect to a point wy, an interior point of
D if the line segment with initial point wy lies entirely in D. If a function f maps E onto a domain
that is starlike with respect to wy, then we say that f is starlike with respect to wy. In the special case
that f is starlike function with respect to origin. The class of univalent starlike functions with respect
to origin is denoted by S *. The class of starlike functions with respect to the origin have been studied
extensively, for some details [5, 6].

In 1933 Spacek [19] extended the idea of starlike functions by using the logarithmic spirals instead
of line segment. Let a € (—g, %) The curve y, : t — exp (tei“), t € R and its rotation ey, (1),
0 € R are called a-spirals. A domain D C C is said to be a-spirallike with respect to the origin if the
spiral with initial point O to every point in D lies in D. A function f € A is spirallike if it maps E onto

a domain which is spirallike with respect to 0. The class of spirallike functions is denoted by S,. In

otherwise :
So = {fEA:Re(ei“tht—éi))>0, zeE}.

Kim and Sugawa [10] introduced the notion of @-argument. Consider that 6 = arg, w with w €
¢y, (R) . By using the a-argument, it is clear that f € S, if and only if

(%(argaf(reie)) >00eR0<r<l).

For some details about the spirallike functions [1,5,6]. A function f with f(0) = f’(0) — 1 = 0 is said

to be Robertson functions if )
i zf" (z
Re{e (1 + 70 )} >0, ze E.
The class of Robertson functions is denoted by C, and defined by Robertson [17]. It is clear that
Cy = C, usual class of convex functions. In the view of above discussions about the spirallike functions
and Robertson functions, we have the following relation. Let f € A. Then f € C, if and only if
zf" € S,. By using the concept of Janowski [8], Sen et al. [18] studied the class C, [A, B]. Let A € C,

Be[-1,0)and a € (—g, g) Then C, [A, B] denotes the class of analytic functions f in the open unit
disc with f(0) = 0 = f" (0) — 1 such that

e (1 + Z]]:/(S)) =cosap (z) +isina,
with
@) = 1+Aw(2)
Py = 1+Bw(®)
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The single-valued branch of logarithms for f’(z) when f € C,[A, B] is denoted by log f’ (z) with
log f" (0) = 0. Yanagihara [21,22] determined the region of variability for the class of convex functions.
Ponnusamy et al. [13] found the region of variability for some subclasses of univalent functions. For
some work on region of variability, [7,11-16] and references therein.

Using the Herglotz representation for Janowski functions, it can be seen that for f € C, [A, B] there
exists a unique positive unit measure u in (-, ] such that

’ . 1+ Aze™
1+ ZJJ; (g) _ o lcosafﬁzitd,u (1) + isina}. (1.1)
This shows that
, A-B _, Be
Ing (Z) = B e Cosafmdu (t) (12)

-7

It follows from (1.2) that for each fixed z, € E, the region of variability is the set V, [z0, A, B] given as

A-B
{ . e i@ COSQ’lOg(l +Bz) 7] < |ZO|} .

Let
) z 77 (Z)
p (z):ew‘(1+ )
! /(@
Then there exists a Schwarz function w € 8, such that
Py (Z) _ ei(l

w(z) = (1.3)

Acosa +iBsina — Bps(2)
Let f € C, [A, B]. Then by applying Schwarz lemma, that is |w;, (O)| < 1[4], we get
| (0)] = (A — B)cos |wf (0)| <(A-B)cosa,
for some 1 € E,Now for A € E = {z € C: |z] < 1} and o € E, we introduce
Ca[AA,B] = {f € C,[A,B] : f"(0) = A(A - B)e ™ cosal

and
V/i (ZOaA’ B) = {logf/ (ZO) : f € Coz [/I’Aa B]} .

The aim of this article is to investigate the region of variability V,(z9,A, B) for the class
feC,[4,A,B].

2. Basic properties of V, (zy, A, B)

We start our investigations by studying certain general properties of the set V), (zy, A, B) such as
compactness and convexity.
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Proposition 2.1. (i) V, (zo, A, B) is a compact subset of C.

(ii) V, (20, A, B) is a convex subset of C.

@@i) If |A| = 1 or z9 = 0O, then V,(20,A, B) = {%e""’ cosalog(1 + B/lzo)} and if |A| < 1 and 7o # 0,
then the set V, (29, A, B) has e~ cos alog(1 + BAzy) an interior point.

Proof. (i) Since C, [, A, B] is a compact subset of C, therefore V, (zy, A, B) is also compact.
(ii) Let fi, f» € C,[4,A, B]. Then for 0 < ¢ < 1, the function

f@)= f (fi )" (f(s)) ds
0

isalsoin C, [4, A, B], therefore V, (29, A, B) is convex because log f” (z) = (1 — 1) log f{ (zx)+tlog f; (2),
te[0,1].

(iii) Since |1| = |w}(0)| = 1, then from Schwarz lemma, we obtain ws(z) = Az, which yields
p) = i:—g; This implies that
A-B
log f' (z) = e '“cosalog(l + BAzp).
Therefore
A-B
Vi(z0,A, B) = { e"“cosalog(l + B/lzo)} .
This also trivially holds true when zp = 0. For 4 € E and « € E, set
+A
Sz d) = —=,
1+ Az
( e (A - B)S(as1, 1)
e"cosa(A - agy,
F, = d¢i|d¢y, z€ E. 2.1
A(2) bf[eXbe 1+ Boro(acr. 1)) 5‘1] S, 2 (2.1)

Then F,,(z)isin C, [4, A, B] and w¢(z) = z6(az, ). For fixed A € E and z, € E\{0} the function

20 .
T A—-B + A
EaaHlogF;J(z):fe cos_oz( ) (as )dg‘
1+ (a/l + B/l)g‘ + aBg?

is a non-constant analytic function of a € E, and therefore is an open mapping. Hence log F) , (z) =
{%e—ia cosalog(l + Bxlzo)} is an interior point of {log F;J ():ac€ E} C Vi(z0,A, B). O

Keeping in view the above proposition, it is sufficient to find V, (z9,A,B) for 0 < 1 < 1 and
zo0 € E\{O}.

3. Main results
In this section, we state and prove some results which are needed in the proof of our main theorem.
In the following proposition, we prove that for f € C, [4, A, B], the ratio f” (z) /f’ (z) is contained

in a closed disc with center ¢ (z, ) and radius r(z, 1) .
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Proposition 3.1. For C, [A, A, B], we have

7@
@

—q(z, D <r(z, ),

where

Dz, ) + |z It (z, VP E (z, )

1=z |7 (z, VP
l2l 7 @ DD &, ) + E @, O]

1=z Itz DP

q(z, ) =

r(z, )

(3.1

(3.2)

Proof. Since f € C,[A,A, B]. Then by using Schwarz lemma for w, € 8 with w; (0) = A such that

wr@)
———| < Jz).
@ | T
1-4==
Now from (1.3) this can be written equivalently as
I'® _ p(;
'I( ) 2
| <t &),
where
Ae™@ (A — B)cos « B—-A)e@cosa
Dy = LWTAZDse g gy B ,
1 + Bz A1+ Bz
-1-Bz
,A) = .
T = T

This is equivalent to

7@ _DED+EPITG P EED| _ Rl @ DIA @)+ B D)
f @ L=z vz P I e G0

Now after simple calculations, we have

T 1—lez|4+28(1—|z|2)Re/lz+|/1|2|z|2(Bz—1)
— 1ZI [T (T, = .

11+ Bz
Also _
e cosa (A — B) (|/1|2 - 1)
Dz, )+ E(z, 1) = -
(1 + BAz) (/1 + Bz)
and

D)+ (2, VP E(z,A) =
11 + BAz]?

e (A - B)cosa {/1(1 — |z|2) + Bz (l/ll2 - |Z|2)}

(3.3)

(3.4)

(3.5)

(3.6)
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By setting
Dz, )+ |z It @ AP E (2, A)
q(z ) = 5 >
1 —12” |7 (z, DI
It @ DD (z, ) + E (2, D]
r(Za /l) - 2 2 .
1 =1z|° |7 (z, DI

The relation (3.1) occurs from (3.6) and the above relations. Equality is attained in (3.1) when f =
F o ,(z), for some z € E. Conversely if equality occurs in (3.1) for some z € E\{0}, then equality must
hold in (3.3). Thus by Schwarz lemma there exists 6 € R such that wy(z) = z6(e”z, 2) for all z € E.
This implies f = Fo,. O

Geometrically the above proposition means that the functional logf” lies in the closed disk centred
at g(z, A) with radius r(z, A).

For A4 = 0, we have the following special result which gives us bounds on pre-Schwarzian norm of
locally univalent functions.

Corollary 3.2. Let f € C,[0,A, B]. Then

/@ —e™ (A — B)cos a Bz|z]? < |z |A — B|cos a

@ 1-B|g* 1 - B[
Therefore
[ (@)
1 — Bz <A - B||z] cos a.
( ) 1@

Since |B| £ 1, so

m <|A — B||z|cos a.

1=z
( ) 1)
The pre-Schwarzian norm for locally univalent functions is defined as

f// (Z)
@

It is well-known that || f|| < 6, if f is univalent. Becker and Pommerenke [2] proved that if || f|| < 1, then
f is univalent in E and this bound is sharp. Yamashita [20] proved that if f is convex, then ||f]| < 1.
The norm estimates for some subclasses of univalent functions are studied by many authors. For some
details [3,9]. From Corollary 3.2, it is evident that for /" (0) and A = 1, B = —1, we have ||f]| < 2cos @
for Robertson functions. This result was proved by Ponnusamy et al. [15] also for @ = 0, we have
1l < 2.

In the following result, we prove that the set V, (zo, A, B) is contained in a closed disc with centre
O (A, r)and radius R (4, r) .

/1l = sup (1 - |z

zeE

Corollary 3.3. Consider the curvey : z(t), 0 <t < 1in E with z(0) = 0 and z (1) = 2y, then
Vi(20,A,B) CE(Q(A,1),R(A 1)) ={weC:lw-Qr| <RAr),
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with
1

fq (z(0), D7 () dt,

0
1

f r(z(®,)7 (1) dt,

0

Q(,r)

R(A,r)

where q (z, A) and r (z, 1) are given in Proposition 3.1.

Proof. Suppose that f € C, [4, A, B], then from proposition 3.1, we get

1
f{f”(z) } )
—— —q(z(0), )7 @) dt
‘0 @

1
f‘f” ()
) f (@)

llog £ (z0) — Q (A, 7)|

—-q(z(@®),)

2 (Dl dt.

Now using proposition 3.1, we get

1

fog 1" o) - 00| < [ rc. D 0]dr =R,

0
This shows log f’ (z0) € D(Q(A,7),R(4,r)). Hence the required result. O

We need the following lemma which ensures the existence of normalized starlike function which is
useful in the proof of next result.

Lemma 3.4. For 6 € R and || < 1, the function

Z

ei@{Z
G(z):f — sdl, z€E,
(1+ (e + B, + Be*?)

0

has zeros of order 2 at the origin and no zero elsewhere in E. Moreover, there exists a starlike
normalized univalent function Gy in E such that G = 1e“G?.

The above lemma is due to Ponnusamy et al. [7]. In the below proposition we show that log F ;,.9 A (z0)
lies on the boundary of the set V, (z¢, A, B).

Proposition 3.5. Let 7y € E\{0}. Then for 8 € (—n, nt], we have log F,  (20) € 0V, (z0,A, B). Further
iflog 1’ (z9) = log F;,.“ (z0) for f € Co[A,A, B], then f = F i .

Proof. Using 2.1, we have
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z &
e cos(A — B)o(a&, )
F, = dé; | dé;.
1) Of[eXPof 1+ B&,5 (az).) &1 [dér

Therefore
F, (@) e @ cos (A — B) 6 (az, )
F @ 1 + Bz6 (az, 1)
e(A—-B)cosa (az+ Q)
1+ (/ia + B/l)z + Baz?

From (3.5), it follows that

F! () DG ¢ (A - B)cosa (1 -|1)az
- -D(z, = -
@) {1+ (a+ BA)z+ Baz?} (1 + BzA)
F! (2) e (A - B)cosa (|/l|2 - 1)
— +E(z,1) = - . )
F (2) {1 + (/la + B/l)z + Bazz} (/l + Bz)
Therefore
F,@)
,’ - (Za /l)
F, () 1
_ FL@ D)+ Ir@GAPEG D
F,, ) 1 -z v (z, VP

I F/, (@) ) , [F;;) @ )}
. —-D(z,A) - ,A . E(z, A
1=z Ir (z, DI {F;,/l @) G-k F,@ PR

e (A — B)cos a'(l — |,1|2) (1 + (1€ + BA)z + Beiezz)
{1 = B2 " +2B(1 = 2?) Redz + |AP o (B2 = D}{1 + (da + BA) z + Baz?}

Putting a = ", we get

- 2
Fl, (@ r(z, ) ez ’1 + (/16’9 + B/l) Z+ Be’gzz‘
’ - ? = - . 2"
Flo,@ 12 (1 + (/1619 + B/l) 7+ Be’ezz)
By using Lemma 3.4, we obtain
F;:H 1 (Z) e—iaG/(Z)
= - q(z, ) =r(z, )———. (3.7)
Feiﬁ’/l (2) IG"(2)]

Using the argument of Lemma 3.4 that G = 2‘lei9Gg, where Gy is starlike in E with G, (0) = G (0) —
1 =0, for any zp € E\{0} the linear segment joining 0 and Gy(z) lies entirely in Go(E). Let vy, be the
curve defined by

o : 2(t) = Gy (tGo(z0)) , t € [0, 1].
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Since G(z(1)) = 27" (Go(2(1)))* = 27'e” (tGo(z0))* = 1*G(z). Differentiation w.r.t 7 gives us

G'(z()7 (t) = 2tG(zp), t€[0,1]. (3.8)
Therefore
i, (@ e G(zp)
- ) (1) = L )——— 17 (0)].
{ Fr, @ q(z (1) )}Z @) =riz@,N Gl 12" (2)]

This relation together with (3.7), we get

log F,tH A (Z) - Q ()/07 /l)

S _ o%_

(F;:“( 2)

-q(z, ﬂ)] Z () dt (3.9)
"0, (@)

G (z(t)Z (1),
a0, D S e

1
G ,
o~ Of H(2(), DI (O

e"G(z0)
1G(z0)|

This shows that log F,, 2 (z) € OE(Q (yp, ), R (yp, 1)), where Q(4,yy) and R(4,7,) are defined as in
Corollary 3.3. Also we have log F ’,9 2 (z0) € V1 (20, A, B), therefore log F ’,g 2 (z0) € OV (29, A, B).

Now we have to prove log f (z9) = log F’ (z,) for some feC,[A,A, B], we have

R(4, y0)-

_ G2 (0) '
h()=e G {f’ Z@) q(z(t),/l)}z (1) (3.10)
_ @G @) [F () :
where vy, : z(f), 0 <t < 1. Then the function 4 is continuous and
J" @)
h(t A
0] = | i~ 4G 0. )|I< ol

Using Proposition 3.1, we have

WOl <7z, @)

Now using Proposition 3.1, we get Ih(t)l < r(z(t), D)|Z'(¢)|. Further from (3.9), we have From (3.7)

17 (Z)
P . f (Z) e’g/l
and (3.8), this implies that 7o = P, o

f:Feia’/l,ZEE. O

on y,. The identity theorem for analytic functions yields us
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Main theorem

In our main result, we give precise description of regions of variability for the class C, [1, A, B] and
show that the boundary dV,(zy, A, B) is a Jordan curve.

Theorem 3.6. Let A € E and zy € E\{O}. Then boundary 0V ,(zy, A, B) is the Jordan curve given by

20

(—m, ] 36— log F;"H,/l (z0) = f
0

e cosa (A — B)d(ag, )
1 + Bgd(ag, 1))

Iflog f' (z0) = log F;”’,A (20) for some f € C,[A,A, Bl and 0 € (—nr, rt], then f(2) = Fi ().
Proof. First we have to show that the curve

(-m,m] 36 - log Fy , (20)
is simple. Let us assume that

log F;,'Q] A (ZO) = log F;iez’/l (ZO)

for some 60,0, € (—m,n] with ; # 6,. Then the use of Proposition 3.5 yield us that F;ml /I(ZO) =
F’;, (z0), which further gives the following relation

(WFE,-F,l (@) ) (er,-gz (@) )
T|————, A =7|———,1]|.

Z Z
This implies that B 3 3 3
B(ze™ + 1) + A1 + 2¢”'2)  B(ze™ + ) + A(1 + Ae"7)

1 + Aeiz + AB(ze® + 1) 1 + Ae®z + AB(ze® + 1)
i6,

After some simplification, we obtain ze' = ze™®, which leads us to a contradiction. Hence the curve
is simple. Since V,(zp, A, B) is compact convex subset of C and has non-empty interior, therefore the
boundary dV,(z¢, A, B) is a simple closed curve. From Proposition 3.5 the curve dV,(zy, A, B) contains
the curve (—m, ] 3 6 — log Fs , (20). Since a simple closed curve cannot contain any simple closed
curve other than itself. Thus 0V ,(z¢, A, B) is given by (-, 7] 3 6 — log F ;.6’ A (20)-
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Geometric view of theorem

The following figures show us the geometric view of our main theorem with various choices of
involved parameters.

0.25 e B b
025 0.8 0TS 1 1.5\ 15 \
—0.25/ - \
] \I 1
) |
[ \ s ]
-05 \ : *
[} |
/ 0.8
-0.75 f
{
A -1
-1
1.5
q""-\-\_\_\__,__
—
g = —-0.261209 + 09269351
Zp = 0335192 -0.7873331 . :
A= 00737292 + 0.4667061
A= 00737292+ 04667061
f=-1991244, y=0.383292
A=1, B=-1,a=% o -
3 A=2(Q1-F)cosye ¥ -1, B=—1__cx=—T
e
3 -0.04 -0.03 -0.02 -0.01 0.01 a.o0z
e T
-0.02
0.5 01 015 O
/ \ -0.08
— S e

= -041227 - 05217344

0 : zg = 0.771264 + 0.1512040i
A= -0.0875648 + 007141667 B b T e b BISES
4= 09868233 + 0008354537 S —
=—0.50,a=% B=-0.50, a=—%
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