Research article

A note on (p, q)-analogue type of Fubini numbers and polynomials

  • Received: 29 September 2019 Accepted: 09 March 2020 Published: 17 March 2020
  • MSC : 11B68, 11B73, 11B75, 11B83, 05A30

  • In this paper, we introduce a new class of (p, q)-analogue type of Fubini numbers and polynomials and investigate some properties of these polynomials. We establish summation formulas of these polynomials by summation techniques series. Furthermore, we consider some relationships for (p, q)-Fubini polynomials associated with (p, q)-Bernoulli polynomials, (p, q)-Euler polynomials and (p, q)-Genocchi polynomials and (p, q)-Stirling numbers of the second kind.

    Citation: Waseem Ahmad Khan, Kottakkaran Sooppy Nisar, Dumitru Baleanu. A note on (p, q)-analogue type of Fubini numbers and polynomials[J]. AIMS Mathematics, 2020, 5(3): 2743-2757. doi: 10.3934/math.2020177

    Related Papers:

  • In this paper, we introduce a new class of (p, q)-analogue type of Fubini numbers and polynomials and investigate some properties of these polynomials. We establish summation formulas of these polynomials by summation techniques series. Furthermore, we consider some relationships for (p, q)-Fubini polynomials associated with (p, q)-Bernoulli polynomials, (p, q)-Euler polynomials and (p, q)-Genocchi polynomials and (p, q)-Stirling numbers of the second kind.


    加载中


    [1] K. N. Boyadzhiev, A series transformation formula and related polynomials, Int. J. Math., 23 (2005), 3849-3866.
    [2] L. Carlitz, Eulerian numbers and polynomials, Mathematics Magazine, 32 (1959), 164-171.
    [3] R. Chakrabarti, R. Jagannathan, A (p, q)-oscillator realization of two parameter quantum algebras, Journal of Physics A: Mathematical and General, 24 (1991), L711-L718.
    [4] A. Dil, V. Kurt, Investing geometric and exponential polynomials with Euler-Seidel matrices, Journal of Integer Sequences, 14 (2011), 1-12.
    [5] U. Duran, M. Acikgoz, Apostal type (p, q)-Bernoulli, (p, q)-Euler and (p, q)-Genocchi polynomials and numbers, Comput. Appl. Math., 8 (2017), 7-30.
    [6] U. Duran, S. Araci, M. Acikgoz, A note on q-Fubini polynomials, Advanced Studies in Contemporary Mathematics, 29 (2019), 211-224.
    [7] F. H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193-203.
    [8] F. H. Jackson, On q-functions and a certain difference operator, Transactions of the Royal Society of Edinburgh, 46 (1909), 253-281. doi: 10.1017/S0080456800002751
    [9] L. Kargin, Some formulae for products of Fubini polynomials with applications, arXiv:1701.01023, 2016.
    [10] W. A. Khan, I. A. Khan, J. Y. Kang, On higher order (p, q)-Frobenius Genocchi numbers and polynomials, J. Appl. Math. and Informatics, 37(2019), 297-307.
    [11] W. A. Khan, I. A. Khan, A note on (p, q) analogue type of Frobenius Genocchi numbers and polynomials, East Asian Math. J., 36 (2020), 013-024.
    [12] H. M. Srivastava, H. L. Manocha, A treatise on generating functions, Ellis Horwood, New York, 1984.
    [13] P. N. Sadjang, On the fundamental theorem of (p, q)-calculus and some (p, q)-Taylor formulas, arXiv:1309.3934, 2013.
    [14] S. M. Tanny, On some numbers related to Bell numbers, Canad. Math. Bull., 17 (1974), 733-738.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3560) PDF downloads(324) Cited by(9)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog