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1. Introduction

Throughout this presentation, we use the following standard notions: N = {1,2,3,---}, Ny = NU{0}.
Here as usual Z denotes the set of integers, R denotes the set of real numbers and C denotes the set of
complex numbers.

The quantum calculus or g-calculus has several applications in different branches of physics and
mathematics. It has attracted serious attention of researchers due to its different applications. At the
beginning of 19" century, Jackson initiated and developed the application of the g-calculus (see [7,8]).
Later Chakrabarti and Jagannathan defined Jackson (p, g)-derivative as a generalization of g-derivative
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(see [3]). Sadjang [13] developed several properties of the (p, g)-derivatives and the (p, g)-integrals

and as an application gave two (p, g)-Taylor formulas for polynomials.

For the expedience, we present some definitions and concepts of (p, g)-calculus that were used in

this article by assuming as p and ¢ are fixed number such that0 < p < g < 1.
The (p, g)-derivative of a function f (with respect to x) is defined by

f(px) — f(gx)
(p—qx

and D, ,f(0) = f '(0), where f is the ordinary derivative of f.
The (p, g)-derivative operator holds the following properties

Dp,qf(x): ,(x#0,p#¢q)

D, ,(f(x)g(x)) = g(p(x))D, 4 f(x) + f(gx)D,,8(x),

and

D (f(x)) _ g(qx)Dp,qf(x) - f(qx)Dp,qg(x)
"\ g g(px)g(gx) '
The (p, g)-analogue of (x + a)” is given by

(x+a),,=(x+a)px+aq):-- P 2x+ag" (P x+ag" ), n>1

CN() @5 ek
= pq xa -,
>

pq
where the (p, ¢)-Gauss binomial coefficients (Z)pq and (p, g)-factorial [n],,! are defined by
(Z)M = ! (n>k)and [n],,! = [n],q - [2],4[1],4 (n € N).

- [n_k]p,q![kjp,q!

The (p, g)-exponential functions are defined by

(o)

and E, (x) = Z

b
i [nlpg! i [nlpg!

> p(g)xn q(g) X"

€pq(x) =

under condition
epq(XE, (—x) = 1.
It follows from (1.1) and (1.5) that

D, qe,(x)=e,,(px) and D, E, (x)=E, (gx).
The definite (p, g)-integral of a function f is defined by (see [3])

4 p*
f: FX)dygx = (p=q)a ) c],mf(aq,ﬁ1 )

k=0

with the following property

b b a
ff(x)dp,qx:f(; f(x)dp,qx—ﬁ fd, gx.

(1.1)

(1.2)

(1.3)

(1.4)

(1.5)

(1.6)

(1.7)

(1.8)
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The generalized (p, g)-Bernoulli, the generalized (p, g)-Euler and the generalized (p, g)-Genocchi
numbers and polynomials are defined by means of the following generating function as follows
(see [5]):

t ¢ n
epgt) = 1 Epgit) = 0, B : o (19
(e[,,q(t)— 1) €pq(XEpq(yD) = HZ; (,y:p 61)[ A lt|<2x  (1.9)
2 ¥ O "
(ep’q(t) n 1) ey (xE, ,(yt) = % EX(x,y: p, CI)[ ]pq | t|<m (1.10)

and

2t ¢ n o

(—ep,q(t) n 1) epq(XIf)qu(yl) ZG( )(x y:ip, Q)[ ]pq | t|<m (1.11)

It is clear that
B(0,0: p,q) = B9(p,q), E©0,0: p,q) = E“(p,q),

and
G(0,0: p,q) = G(p, q), (n € N).

Geometric polynomials (also known as Fubini polynomials) are defined as follows (see [1]):

Fo(x) = Z{ Z }k!xk, (1.12)

k=0

where { Z } is the Stirling number of the second kind (see [9]).

th

For x = 1in (1.12), we get the n
in defined by

Fubini number (called Bell number or geometric number) F,, [2,4,14]

F,,(l):F,,:Z{ Z }k!. (1.13)
k=0

The exponential generating functions of geometric polynomials are given by (see [1]):

1 N "
I—xe—1) ;F”(X)H’ (119

and related to the geometric series (see [1]):

(59

d\" 1 1 X
(x—) - kaxk = —Fu(;—.lxl< L.

Let us give a short list of these polynomials and numbers as follows:
Fo(x) = 1, F1(x) = x, Fa(x) = x + 2x7%, F3(x) = X + 6x7 + 6x7, F4(x) = x + 14x7 + 36x° + 24x*,
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and
F(): l,Fl = 1,F2:3,F3 = 13,F4:75.

The out line of this paper is as follows: In section 2, we consider generating functions for (p, q)-
analogue type of Fubini numbers and polynomials and give some properties of these numbers and
polynomials. In section 3, we derive summation formulas for (p, g)-analogue type of Fubini numbers
and polynomials. In section , we give relationships for (p, g)-Fubini polynomials associated with (p, g)-
Bernoulli polynomials, (p, g)-Euler polynomials and (p, g)-Genocchi polynomials and (p, g)-Stirling
numbers of the second kind.

2. (p, g)-analogue type of Fubini numbers and polynomials

In this section, we introduce (p, g)-Fubini polynomials and obtain some basic properties which give
new formulas for F,,(x,y;z : p,q).
Definition 2.1. Let p,q € C with 0 <| g |<| p |< 1, the three variable (p, g)-Fubini polynomials
F.(x,y;z: p,q) are defined by means of the following generating function:

1 - "
e, (xE, ,(yt) = F.(x,y;z:p,q) . 2.1
1 —z(epq(0)— 1) P pal HZ:(; PP [n]pq!
Forx =y=0and z = 11in (2.1), we have
F.(0,0;1: p,q) = Fu(p, 9), (2.2)

where F,(p, q) are called the (p, g)-Fubini numbers.

Obviously that
Fy(0,0;z: p,q) = Fu(z: p,q),

Fo(x,y:2:p,@lp=1 = Fu(x,y;2: q), (see[6])
lim F,(x,0:p,q) = F,(x;2), (see[l])

q—)l;zl

lim F,0,0;z: p,q) = F,(2), (see[1,4]).

q_)l;,=1

Theorem 2.1. The following series representation for the (p, g)-Fubini polynomials F,(x,y;z : p,q)
holds true:

n n "
Fixy;2:p@)= ) ( o ) Fron(@: P+, (2.3)
m=0 pq
Proof. From (2.1), we have
tn

iFn(x,y;z o N7))

n=0

(214! T1- 2epq(t) — 1)ep’q(xt)EP,q(yf)

m

= Foz:p, ) ——(x+y), :
Z Z [12]p.q! P4 m] !

n=0 m=0
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Replacing n by n — m in above equation and equating the coefficients of same powers of 7 in both sides
of resultant equation, we get representation (2.3). O

Theorem 2.2. The following summation formula for the (p, g)-Fubini polynomials F,(x,y;z : p,q)
holds true:

2 n m n—m n—m
Fu(xy:0:p.g)= ) m) pOg Dy, (2.4)
m=0 pq
1 n n—m —m
Fn(x,y;z:p,q)=2(m pUIF0,y32: g™, (2.5)
m=0 pq
& n n—-m n—m
Fn(x,y;z:p,q)=2(m gV F(x, 052 pgy™™" (2.6)
m=0 P4

Proof. Using Eqs (1.4)-(1.6) in generating function (2.1), the proof can be easily proved. So we omit
it. m]

Theorem 2.3. For n > 0, the following formula for (p, g)-Fubini polynomials holds true:

(x+ Y, = Falx,y:2: poq) — 2Fu(x + 1,y 22 p,q) + 2Fu(x,y; 22 p, @) (2.7)

Proof. We begin with the definition (2.1) and write

1 —z(epq(1) — 1)6
1—z(e, (- 1)

epq(XDE), ;1) = (xE, (1)

_ ep,q(XZ)Ep,q(yt) _ Z(ep,q(t) - 1)
1 —z(e,q(H)—1) 1 —z(e,q(t) = 1)
Then using the definition of (1.4) and (2.1), we have

epg(XE, ().

[ee] tn
(x+y),
(o) tn
= > [Faxysz: pog) = 2Fu(x+ L,yi2: pog) + 2Fa(xy:2: p @)l .
n=0 [12]p.q!
Finally, comparing the coefficients of ,’;—':, we get (2.7). O

Theorem 2.4. The following formula for (p, g)-Fubini polynomials holds true:

F,(x+ Lyiz:p,q) =1+ Fu(x,yi2: p.q) — (x+ ), (2.8)

Proof. From (2.1), we have

Me

[Falx+ 1y:2: p.q) = Fu(x.y:2: p@)] 7=
[1]p.q!

3
Il
(=]
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_epq(xDE, 4, (y1) _
=T, 0@

1 [ ey (XDE, ,(y1)

Tz[l-zep -1 ep,q(”)Ep,q(yt)]

n

= % Z(; [Fn(x,y;z 'pq) — (x + y);,q] (1],

Comparing the coefficients of jT", on both sides, we obtain (2.8). O

Theorem 2.5. The following recursive formulas for the (p, g)-Fubini polynomials F,(x,y;z : p,q)
holds true:

D, Fu(x,y:2: p,q) = [n],Fn1(px,y;2: P, q), (2.9)

Dp,q;yFn(x’y;Z - D Q) = [n]p,an—l(x’ qy,z . p, ‘I) (210)

Proof. Differentiating generating function (2.1) with respect to x and y with the help of Eq. (1.7) and
then simplifying with the help of the Cauchy product rule formulas (2.9) and (2.10) are obtained. O

Theorem 2.6. The following (p, g)-integral is valid

b Frii(Z 32 0,9) = Fant (5,332 P, @)
F,(x,y;z:p,q)dpgx = p 1] , (2.11)
a pP.q
b Fr1(6, 3522 po@) = Fau (%, 4321 p,q)
F,(x,y;z:p,@)d, gy =p P ) (2.12)
a P.q

Proof. Since

b
0
f ——Fu(%,:2: @)y % = f(b) = (@), (see [13]),
a p’qx

in terms of Eq. (2.9) and Eqs (1.7) and (1.8), we arrive at the asserted result

b b
o p X
—Fn(x,y;z:p,q)d,x=—f Fn(—,y;z:p,q)d,x
fa GpgX M I+ g Jo "\ "

Fue1(3 332 0o @) = Faus (2,332 P, q)

[n+1],,

=p
The other can be shown using similar method. Therefore, the complete the proof of this theorem. O
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3. Main results

First, we prove the following result involving the (p, ¢)-Fubini polynomials F,(x,y;z : p,q) by using
series rearrangement techniques and considered its special case:

Theorem 3.1. The following summation formula for (p, g)-Fubini polynomials F,(x,y;z : p,q) holds
true:

k.l

Sk ! b

Fe(w,y;2:p,q) = Z(n) (S) P = 0" Frapn (63325 pr ). (3.1
P4 pq

n,s=0

Proof. Replacing ¢ by ¢ + u in (2.1) and then using the formula [12, p.52(2)]:

& N
S =S e (32)
N=0

n,m=0

in the resultant equation, we find the following generating function for the (p, g)-Fubini polynomials
Fo(x,y;2: p.q):

1
1= z(e, (t+u)—1) Ep.

dO(1 +u))

k l

= € y(—x(1 + u))z Fi(%, ;2 p.q) L (see [10,11]). (3.3)

k,1=0 [k]pq' [Z]Pq

Replacing x by w in the above equation and equating the resultant equation to the above equation,

we find
k i

epa((W = )t + 1)) Z Frax,y:2: pyg)m—
2 Klpg! 1!

t* u

(K] pg! [1pq!

Ms

Fk+l(w y:z:p, Q) (34)

~
~
I

(=)

On expanding exponential function ( 4) gives

[(w = 0@ + ] pl) < rooul
F+ ’ ’
Z VT, ];) (X, Y320 p q)[k]pq, T

1

N u
Fruw,y;z: p,q) ,
kzzo ' Ko [Tpg!

which on using formula (3.2) in the first summation on the left hand side becomes

(3.5)

(w— x)n+stnusp(”+ )& k ul
F+ ’ ’
) sl 2T PO

n,s=0

tk !

- u
= Fraw,y;2:p,q) :
Zg) " [k]pq! 14!

(3.6)

k)
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Now replacing k by k — n, [ by [ — s and using the lemma ([12, p.100(1)]):

0 ) k
ESEEAMJ):ESESAULk—m, (3.7)

k=0 n=0 k=0 n=0

i & (W—x)"”p(n;g P ( 5 ) t* u'
k+l-n-s\X, Y52 D, g
&2 A [nlpllsly! ’ (k=1)p! (1= 5)p4!
- t* u!
= ) Fuat0n, 332 p @) — . (3.8)
k,1=0 pq- pq-

Finally, on equating the coeflicients of the like powers of ¢ and u in the above equation, we get the
assertion (3.1) of Theorem 3.1. O

Remark 3.1. Taking / = 0 in assertion (3.1) of Theorem 3.1, we deduce the following consequence of
Theorem 3.1.

Corollary 3.1. The following summation formula for (p, ¢)-Fubini polynomials F,(x,y;z : p,q) holds

true:
k

k n+s
Fiw,y;2:p,q) = Z( n) P )(W—X)"Fk_n(x,y;z:p,q). (3.9)
n=0 P9

Remark 3.2. Replacing w by w + x in (3.9), we obtain

k
k n+s
Fiw+x,y;z:p,q) = Z( " ) p( )W"Fk_,,(x,y;z 1P q)- (3.10)

n=0 Dq

Theorem 3.2. The following summation formula for (p, g)-Fubini polynomials F,(x,y;z : p,q) holds
true:

n,m n m .
Fn(w,u;z:p,q)Fm(W,U;Z:p,q)=Z(r) (k ) W—x+u-y),,
r,k:O b9 P4

XFu (x,y:2: p @)W =X +U = Y)s Fou (X, Y;Z: p,q). (3.11)

Proof. Consider the product of the (p, g)-Fubini polynomials, we can be written as generating function
(2.1) in the following form:

ep,q(Xt)Ep,q(yt) ep,q(XT)EPa‘I(YT)

1 —2(e, g0 — 1) 1 = Z(epo(T) - 1)

m

[m]p.q I

:ZFu%zn@ ZF@YZp@ (3.12)
n=0

[nlpq! £
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Replacing x by w, y by u, X by W and Y by U in (3.12) and equating the resultant to itself,

ZZFn(w,u;z:p,q)Fm(W,U;Z:p,q) A—
n=0 m=0 [n]P,‘l! [m]p,q!
=epg (W= E, (u-y)e,,(W-X)T)E,,(U-Y))

" ™

[n)pq! Ml q!

xi iFn(x,y;z P QF (X, Y Z : p,q)

n=0 m=0

which on using the generating function (3.7) in the exponential on the r.h.s., becomes

(oo} (o] tn Tm
Z Z F.w,u;z: p,)F(W,U;Z : p,q)———

=0 m=0 [n]pq! [ml)!

+r

= > w=x+u-y), 5aF.(xy;0)——"F——
Z Vpat g [1]pq![r]pq!

n,r=0

(o) m+k
X W-X+U-Y) F,(X,Y;Z)— . 3.13
M;O( ) JiFn P (3.13)

Finally, replacing n by n — r and m by m — k and using Eq. (3.7) in the r.h.s. of the above equation

and then equating the coefficients of like powers of r and 7', we get assertion (3.11) of Theorem 3.2. O

Remark 3.3. Replacing # by y and U by Y in assertion (3.11) of Theorem 3.2, we deduce the the
following consequence of Theorem 3.2.

Corollary 3.2. The following summation formula for (p, ¢)-Fubini polynomials F,(x,y;z : p, q) holds
true:

n.m n m .
F.w,y;z2: p,QF, (W, Y;Z: p,q) = Z( - ) ( A ) W= x),  For(X,u52 2 p,q)
r,k=0 pPq P9

X(W = XYy FutX. U3 Z 2 p. ). (3.14)

Theorem 3.3. The following summation formula for (p, g)-Fubini polynomials F,(x,y;z : p,q) holds
true:

n

n
F,(x+1,y;2:p,q) = Z( - ) Fo . (x,y;2:p,q). (3.15)
pPq

r=0
Proof. Using the generating function (2.1), we have
tl’l

[n]pq!

tn

(1]

ZFn(xH,y;z:p,q) —ZFn(x,y;z:p,q)
n=0 n=0

1
) (1 = 2epq(t) = 1)) (€pq(1) = Depg(XDEp (1)
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Il
M8
”Q
=
N
®
S

?
S
T
M8

r=0 Pq )

n=0
=ZFn(x,y;z:p,q) Z ZF( V2P P
n=0 [n]P»q =0 n=0 [ ]p q-
o n n I n
= For(X,y:2:p,q) =) Fulx.yiz:p.q) :
2207, o= Z o=
Finally, equating the coefficients of the like powers of f on both sides, we get (3.15). O

Theorem 3.4. For n > 0 and z; # z,, the following formula for(p, g)-Fubini polynomials holds true:
S n
Z( L ) Fo(xi,yi521 0 po@Fi(x2, 2522 1 p, q)
k=0 pa

ZzF (X1 +x2,y1 +y2:22 1 P, q) — 21 Fp(X1 + X2, y1 +y2521 1 P, q)
o — 21

(3.16)

Proof. The products of (2.1) can be written as

© 00 o tk
ZZFn(xlayl;Zl :p?q)Fk(-XZ’yZ;ZZ:p’q)—‘ '
n=0 k=0 [n]pq! [Kp.q!

_ ep,q(xlt)Ep,q(ylt) ep,q(XZI)Ep,q(yZI)
1 —zi(epq(t) = 1) 1 = 22(epq(t) — 1)

n

o0 n n t
Z Z( L ) Foa(xi,yi21 0 ps @QF (X2, ¥2522 - P, q) ,
Pq [n]paq'

n=0 \ k=0

22 ep,q[(xl + x2)t]Ep,q[(yl + yZ)t] _ <1 ep,q[(xl + x2)t]Ep,q[(yl + )’2)l]
L2 =2 1 —zi(epq(0) = 1) 2 =2 1 —2(epq(0) = 1)

i (Zan(xl + X2, y1 + Y2322 P, q) — 2 Fu(x1 + X2, 91 + 2521 1 ps q)) r
= 22— 2 [n],4!

By equating the coefficients of ; on both sides, we get (3.16). O
Theorem 3.5. The following relation for the (p, g)-Fubini polynomials F,(x,y;z : p,q) holds true:
n n .
(1 +2)F.(x,y;2:p,q) =2 Z ( A ) Foi(X,y;2:pq) + (x+y), (3.17)
k=0 pa
Proof. Consider the following identity

1+2 B 1 L]
(1= z(epg(t) = D)zep () T=2(epg(d—1)  zep ()
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Evaluating the following fraction using above identity, we find

(1 + ey, (xE, 4,(y1) _ epq(XE, ;(yt) N epq(XE, ;(yt)
(1 - Z(ep,q(t) - 1))Zep,q(l) 1- Z(ep,q(t) - 1) Zep,q(t)

I’Z

[1]p.q!

_ZZF(x Vit P,q)[] Z Z( ”[]
q

k=0 Pq n=0
Applying the Cauchy product rule in the above equation and then equating the coefficients of like
powers of ¢ in both sides of the resultant equation, assertion (3.17) follows. O

(1 +Z)ZF (x.y:2:p.q)

4. Relationship between (p, g)-Bernoulli, (p, g)-Euler and (p, ¢)-Genocchi polynomials and
(p, ¢)-Stirling numbers of the second kind

In this section, we prove some relationships for (p, g)-Fubini polynomials related to (p, g)-Bernoulli
polynomials, (p, g)-Euler polynomials and (p, g)-Genocchi polynomials and (p, g)-Stirling numbers of
the second kind. We start a following theorem.

Theorem 4.1. Each of the following relationships holds true:

F,(x,y;z:p,q)
n+1 s
n+1 s K Foi-s0,v;2:p,q) 4.1)
= Z( ) [Z( I ) By i(x: p,gp®) = By(x: p,g) | = yl R,
pa L=o P [n+ 1],

where B, (x : p, q) are called the (p, g)-Bernoulli polynomials.

Proof. By using definition (2.1), we have

1
(1 — 2epq(n) - 1)) epqg(XDEp 4 (V1)

_ 1 t epqy() =1
B (1 — 2epq(1) - 1)) epq(t) —1 t epq(X)E ) 4(y1)

ISy s pap®
= - (Z(k)p’qu_k(x-p,q)p )[],, ZF(Oy,z Pa

n

n=0 \ k=0 n=0 q

_li (X' ) r iF(O iz ) 1"

[ 24 s(x:p,q 5Tyt 2 2(0,y:2:p,q T
IS () (s O|F "
—;;{;( s )p’qkzz(;( 1 ),,,q s—k(x :p,@p Y | Foo(0,y5 2 p,q)[ o

P n A
- B(.X s ) n— Y(O 2 p, )

t;[;(é‘)p,q pP-q y pq[]pq

By using Cauchy product and comparing the coefficients of o— ] 7, we arrive at the required result
4.1). |
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Theorem 4.2. Each of the following relationships holds true:

F,(0,y;z;u:p,q)

k Fus(0,y:2 2 p, 42
= Z( ) [Z( ) E; i (x:p, q)p(z) +E(x:p,q) O,y;z:p q)’ 4.2)
Pa ra 21,

k=0

where E,(x; p, q) are called the (p, g)-Euler polynomials.

Proof. By using definition (2.1), we have

1
( 1 —z(epq(t) - 1)) epg(XDE, 4(v1)

= ( 1 ) (214 €pq(D) +1
1- Z(e,,,q(t) - 1) epq(t) +1 [Z]Pq

_ NN ©)
20 [Z:; [kzz(;( P )M nk(X 1 p,q@)p )

[
t

X Z F.(0,y;z:p,q)
n=0
(n],q!

epq(XE, ;(vt)

[]]

pa!
Z( ) E,4(x: p,qp® + Z( Z ) E(x:p.q)
q k= P-4 s=0

p4q

n

nlp

B mlm ZO [ZO(

X F,(0,y;2:p,q)

Comparing the coefficients of ——, we arrive at the desired result (4.2). m|

[] [k

Theorem 4.3. Each of the following relationships holds true:

F,.(x,y;2:p,q)

S (n+l) (s ‘ Fos(0,:2: p,q) (4.3)
= Gs— ' p, (2) GS p, ,
Z( s ) [Z (k) S S NPT P

where G, (x; p, q) are called the (p, g)-Genocchi polynomials.

Proof. By using definition (2.1), we have
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|
(1 ~epy () - 1)) epg(XD)Epg (1)
2,4t epq(t) +1

1
= (1 e - 1))ep,q(Xt)Ep,q(yt)e D+l [2]pq epq(XE, ,(yt)

1 (~—( n
_ O
[2]pqt[nz;[;(k)m Gui(x:p,q)p ] +ZG(X p,q) q]

x > Fu(0,y;z:p,
nz(; yizip [ ]
1 (n) & n
=5 Gyi(x 1 p,@p*? + Z ;| Glipa)
P4 p= 0 5= O Pq s=0 12
X Fn -5 0. > Y71
+1-5(0.y: 2 pq)[ ]]M!
Comparing the coefficients of ——, then we have the asserted result (4.3). O

[ ] 1
Theorem 4.4. For n > 0, the following formula for (p, g)-Fubini polynomials holds true:

n

l
n -
Fo(x,y:2:p,q) = § (l) (X+y)Z,ql§ KISk 2 p,g). (4.4)
1204 k=0

=0

Proof. From (2.1), we have

(&) ﬂ 1
ZF(X Y2 p:q)

=0 [n ]pq — z2(epq (1) — l)ep,q(XI)Ep,q(yl)

= epg(E) 1) Y epg(t) = 1)
k=0

b /

= epg(NEp 1) Y 2 > kIS (L k: p,q)

|
k=0 I=k [/ ]P"I'

) o I
- N kIS (LK p,
Z(; X+y)pq[ o Zz kZ:; Sol,k:p Q)[l],,q

1=0

Replacing n by n — [ in above equation, we get

N t
Z Fulxyiz: p @)=
n=0 Pq:

n

0 !
n _ t
=Z[ (l ) (X+y)Z,;szk!Sz(l,k:p,q) TR
=0 )20} k=0 n

n= ]P,t] :

Comparing the coefficients of in both sides, we get (4.4). O

[n ]pq
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Theorem 4.5. For n > 0, the following formula for (p, g)-Fubini polynomials holds true:

n

/
n
Fux+1y:2:pg)= ). (Z) (x+Y)yg Y FKIS U+ 1k + 72 pg). (4.5)
p-q k=0

=0

Proof. Replacing x by x + r in (2.1), we have

= " 1
ZFn(x+ nY;Z:D,q)

=0 bl T ate, 0 =1y cre F DER 0D

= €p g (WEp 1)y (1) D 2 epg(t) = 1)
k=0

(o9

= epg(DE, (0ep (1) Y 2 > KISk : p,g)

|
k=0 I=k L ]1”‘1'
I

ll

1

RS t
= D+ 3 ) KSal+ rktr i pg)—.

Pq
n=0 [7]p.q! =0 k=0 11!

Replacing n by n — [ in above equation, we get

(0] tn
ZF,,(x+ nyY;Z:p,q)
=0 (214!

0 n !
n _ t"
= E‘(E (1 ) (x+y)Z’ql§ RIS (L+rk+7: p,g) -
pg k=0 [1]pq!

n=0 \ /=0

Comparing the coefficients of W in both sides, we get (4.5). O

|
g *
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