Research article Special Issues

On deferred statistical convergence of sequences of sets

  • Received: 10 December 2019 Accepted: 21 February 2020 Published: 27 February 2020
  • MSC : Primary: 40A05, 40C05; Secondary: 46A45

  • The main purpose of this paper is to introduce the concepts of Wijsman deferred statistical convergence and Wijsman strong deferred Cesàro summability for sequences of sets.

    Citation: Mikail Et, M. Çagri Yilmazer. On deferred statistical convergence of sequences of sets[J]. AIMS Mathematics, 2020, 5(3): 2143-2152. doi: 10.3934/math.2020142

    Related Papers:

  • The main purpose of this paper is to introduce the concepts of Wijsman deferred statistical convergence and Wijsman strong deferred Cesàro summability for sequences of sets.


    加载中


    [1] H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241-244. doi: 10.4064/cm-2-3-4-241-244
    [2] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2 (1951), 73-74.
    [3] V. K. Bhardwaj, S. Dhawan, Density by moduli and lacunary statistical convergence, Abstr. Appl. Anal., 2016 (2016), 9365037.
    [4] V. K. Bhardwaj, S. Dhawan, Density by moduli and Wijsman lacunary statistical convergence of sequences of sets, J. Inequal. Appl., 2017 (2017), 25.
    [5] H. Cakalli, Lacunary statistical convergence in topological groups, Indian J. Pure Appl. Math., 26 (1995), 113-119.
    [6] M. Cinar, M. Karakas, M. Et, On pointwise and uniform statistical convergence of order α for sequences of functions, Fixed Point Theory Appl., 2013 (2013), 33.
    [7] A. Caserta, G. Di Maio, L. D. R. Kočinac, Statistical convergence in function spaces, Abstr. Appl. Anal., 2011 (2011), 420419.
    [8] R. Colak, Statistical convergence of order α, In: Modern Methods in Analysis and Its Applications, Anamaya Pub, New Delhi, 2010, 121-129.
    [9] J. S. Connor, The statistical and strong p-Cesàro convergence of sequences, Analysis, 8 (1988), 47-63.
    [10] M. Et, B. C. Tripathy, A. J. Dutta, On pointwise statistical convergence of order α of sequences of fuzzy mappings, Kuwait J. Sci., 41 (2014), 17-30.
    [11] M. Et, R. Colak, Y. Altin, Strongly almost summable sequences of order α, Kuwait J. Sci., 41 (2014), 35-47.
    [12] M. Et, S. A. Mohiuddine, A. Alotaibi, On λ-statistical convergence and strongly λ-summable functions of order α, J. Inequal. Appl., 2013 (2013), 469.
    [13] A. Esi, N. L. Braha, A. Rushiti, Wijsman λ-statistical convergence of interval numbers, Bol. Soc. Parana. Mat., 35 (2017), 9-18.
    [14] J. Fridy, On statistical convergence, Analysis, 5 (1985), 301-313.
    [15] B. Hazarika, A. Esi, N. L. Braha, On asymptotically Wijsman lacunary σ-statistical convergence of set sequences, J. Math. Anal., 4 (2013), 33-46
    [16] M. Isik, K. E. Akbas, On λ-statistical convergence of order α in probability, J. Inequal. Spec. Funct., 8 (2017), 57-64.
    [17] M. Isik, K. E. Akbas, On asymptotically lacunary statistical equivalent sequences of order α in probability, ITM Web of Conferences, 13 (2017), 01024.
    [18] M. Mursaleen, λ- statistical convergence, Math. Slovaca, 50 (2000), 111-115.
    [19] F. Nuray, B. E. Rhoades, Statistical convergence of sequences of sets, Fasc. Math., 49 (2012), 87-99.
    [20] T. Salat, On statistically convergent sequences of real numbers, Math. Slovaca, 30 (1980), 139-150.
    [21] E. Savas, M. Et, On $(\Delta _{\lambda }^{m},I)-$statistical convergence of order α, Period. Math. Hungar., 71 (2015), 135-145. doi: 10.1007/s10998-015-0087-y
    [22] H. M. Srivastava, M. Et, Lacunary statistical convergence and strongly lacunary summable functions of order α, Filomat, 31 (2017), 1573-1582. doi: 10.2298/FIL1706573S
    [23] H. Sengul, M. Et, On I-lacunary statistical convergence of order α of sequences of sets, Filomat, 31 (2017), 2403-2412. doi: 10.2298/FIL1708403S
    [24] H. Sengul, On Wijsman I-lacunary statistical equivalence of order (η, μ), J. Inequal. Spec. Funct., 9 (2018), 92-101.
    [25] M. Yilmazturk, M. Kucukaslan, On strongly deferred Cesàro summability and deferred statistical convergence of the sequences, Bitlis Eren Univ. J. Sci. Technol., 3 (2011), 22-25.
    [26] R. P. Agnew, On deferred Cesàro means, Ann. Math., 33 (1932), 413-421. doi: 10.2307/1968524
    [27] M. Kucukaslan, M. Yilmazturk, On deferred statistical convergence of sequences, Kyungpook Math. J., 56 (2016), 357-366. doi: 10.5666/KMJ.2016.56.2.357
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3337) PDF downloads(363) Cited by(11)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog