Research article

Schrödinger-Poisson system without growth and the Ambrosetti-Rabinowitz conditions

  • Received: 02 November 2019 Accepted: 08 January 2020 Published: 20 January 2020
  • MSC : 35B45, 35J20, 35J50

  • We consider the following Schrödinger-Poisson system $ \left\{ \begin{array}{l} {\rm{ - }}\Delta u + V\left(x \right)u + \phi u = \lambda f\left(u \right)\; \; \; \; \; {\rm{in}}\; {\mathbb{R}^3}, \\ - \Delta \phi = {u^2}, \mathop {\lim }\limits_{|x| \to + \infty } \phi = 0, \; \; \; \; \; \; \; \; \; \; \; \; {\rm{in}}\; {\mathbb{R}^3}. \end{array} \right. $ Unlike most other papers on this problem, the Schrödinger-Poisson system without any growth and Ambrosetti-Rabinowitz condition is considered in this paper. Firstly, by Jeanjean's monotonicity trick and the mountain pass theorem, we prove that the problem possesses a positive solution for large value of $\lambda$. Secondly, we establish the multiplicity of solutions via the symmetric mountain pass theorem.

    Citation: Chen Huang, Gao Jia. Schrödinger-Poisson system without growth and the Ambrosetti-Rabinowitz conditions[J]. AIMS Mathematics, 2020, 5(2): 1319-1332. doi: 10.3934/math.2020090

    Related Papers:

  • We consider the following Schrödinger-Poisson system $ \left\{ \begin{array}{l} {\rm{ - }}\Delta u + V\left(x \right)u + \phi u = \lambda f\left(u \right)\; \; \; \; \; {\rm{in}}\; {\mathbb{R}^3}, \\ - \Delta \phi = {u^2}, \mathop {\lim }\limits_{|x| \to + \infty } \phi = 0, \; \; \; \; \; \; \; \; \; \; \; \; {\rm{in}}\; {\mathbb{R}^3}. \end{array} \right. $ Unlike most other papers on this problem, the Schrödinger-Poisson system without any growth and Ambrosetti-Rabinowitz condition is considered in this paper. Firstly, by Jeanjean's monotonicity trick and the mountain pass theorem, we prove that the problem possesses a positive solution for large value of $\lambda$. Secondly, we establish the multiplicity of solutions via the symmetric mountain pass theorem.


    加载中


    [1] A. Azzollini, A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 345 (2008), 90-108. doi: 10.1016/j.jmaa.2008.03.057
    [2] C. Alves, M. Souto, S. Soares, Schrödinger-Poisson equations without Ambrosetti-Rabinowitz condition, J. Math. Anal. Appl., 377 (2011), 584-592. doi: 10.1016/j.jmaa.2010.11.031
    [3] A. Ambrosetti, R. Ruiz, Multiple bound states for the Schrödinger-Poisson problem, Commun. Contemp. Math., 10 (2008), 391-404. doi: 10.1142/S021919970800282X
    [4] V. Benci, D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Method. Nonl. Anal., 11 (1998), 283-293. doi: 10.12775/TMNA.1998.019
    [5] V. Benci, D. Fortunato, Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations, Rev. Math. Phys., 14 (2002), 409-420. doi: 10.1142/S0129055X02001168
    [6] S. Chen, C. Tang, High energy solutions for the superlinear Schrödinger-Maxwell equations, Nonlinear Anal., 71 (2009), 4927-4934. doi: 10.1016/j.na.2009.03.050
    [7] G. Coclite, A multiplicity result for the nonlinear Schrödinger-Maxwell equations, Commun. Appl. Anal., 7 (2003), 417-423.
    [8] D. Costa, Z. Wang, Multiplicity results for a class of superlinear elliptic problems, P. Am. Math. Soc., 133 (2005), 787-794. doi: 10.1090/S0002-9939-04-07635-X
    [9] V. Guliyev, R. Guliyev, M. Omarova, et al. Schrodinger type operators on local generalized Morrey spaces related to certain nonnegative potentials, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 671-690.
    [10] C. Huang, G. Jia, Existence of positive solutions for supercritical quasilinear Schrödinger elliptic equations, J. Math. Anal. Appl., 472 (2019), 705-727. doi: 10.1016/j.jmaa.2018.11.048
    [11] L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer type problem, P. Roy. Soc. Edinb. A, 129 (1999), 787-809. doi: 10.1017/S0308210500013147
    [12] Z. Liu, Z. Wang, J. Zhang, Infinitely many sign-changing solutions for the nonlinear SchrödingerPoisson system, Ann. Mat. Pur. Appl., 195 (2016), 775-794. doi: 10.1007/s10231-015-0489-8
    [13] D. Lu, Positive solutions for Kirchhoff-Schrodinger-Poisson systems with general nonlinearity, Commun. Pure Appl. Anal., 17 (2018), 605-626. doi: 10.3934/cpaa.2018033
    [14] A. Mao, L. Yang, A. Qian, et al. Existence and concentration of solutions of Schrödinger-Poisson system, Appl. Math. Lett., 68 (2017), 8-12. doi: 10.1016/j.aml.2016.12.014
    [15] E. Murcia, G. Siciliano, Least energy radial sign-changing solution for the Schrödinger-Poisson system in $\mathbb{R}^3$ under an asymptotically cubic nonlinearity, J. Math. Anal. Appl., 474 (2019), 544-571. doi: 10.1016/j.jmaa.2019.01.063
    [16] P. Rabinowitz, Minimax Methods in Critical Points Theory with Application to Differential Equations, American Mathematical Soc., Providence, 1986.
    [17] D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237 (2006), 655-674. doi: 10.1016/j.jfa.2006.04.005
    [18] G. Vaira, Ground states for Schrödinger-Poisson type systems, Ricerche Mat., 2 (2011), 263-297.
    [19] M. Willem, Minimax Theorems, Springer Science & Business Media, 1997.
    [20] L. Zhao, H. Liu, F. Zhao, Existence and concentration of solutions for the Schrödinger-Poisson equations with steep well potential, J. Differ. Equations, 255 (2013), 1-23. doi: 10.1016/j.jde.2013.03.005
    [21] L. Zhao, F. Zhao, On the existence of solutions for the Schrödinger-Poisson equations, J. Math. Anal. Appl., 346 (2008), 155-169. doi: 10.1016/j.jmaa.2008.04.053
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3466) PDF downloads(367) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog