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Abstract: We consider the following Schrödinger-Poisson system −∆u + V(x)u + φu = λ f (u), in R3,

−∆φ = u2, lim
|x|→+∞

φ = 0, in R3.

Unlike most other papers on this problem, the Schrödinger-Poisson system without any growth and
Ambrosetti-Rabinowitz condition is considered in this paper. Firstly, by Jeanjean’s monotonicity trick
and the mountain pass theorem, we prove that the problem possesses a positive solution for large value
of λ . Secondly, we establish the multiplicity of solutions via the symmetric mountain pass theorem.
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1. Introduction

In this paper, we are interested in finding nontrivial solutions to the following one-parameter family
of Schrödinger-Poisson system: −∆u + V(x)u + φu = λ f (u), in R3,

−∆φ = u2, lim
|x|→+∞

φ(x) = 0, in R3. (1.1)

In recent years, system (1.1) has been studied widely due to the fact that it arises in several physical
phenomena (see [3–5, 9, 18]). From the viewpoint of quantum mechanics, this system describes a
charged wave interacting with its own electrostatic field in the case that magnetic effects could be
ignored. The terms u and φ describe the wave functions associated to the particle and electric potential.
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The term φu is nonlocal and concerns the interactions with electric field. The nonlinearity models the
interaction between the particles and external nonlinear perturbations.

There has been a lot of contributions about the following Schrödinger-Poisson system −∆u + V(x)u + φu = f (x, u), in R3,

−∆φ = u2, lim
|x|→+∞

φ(x) = 0, in R3, (1.2)

which was first introduced in [4]. The case V(x) = 1 and f (x, u) = |u|p−2u, 2 < p < 6, has been
studied in [7], where Ruiz gave existence and nonexistence results. The existence of a ground state
solution of (1.2) with f (x, u) = |u|p−2u and 3 < p < 6 was proved by Azzollini [1]. For the general
nonlinearity f and the potential V(x), in [6, 12, 13, 15, 20, 21], the authors studied the existence and
multiplicity of nontrivial solutions for the Schrödinger-Poisson system with superlinear and subcritical
growth condition. The following global Ambrosetti-Rabinowitz type condition plays a crucial role in
the above mentioned papers:

0 < F(u) :=
∫ u

0
f (s)ds ≤ 1

γ
u f (u), (A−R)

where γ > 4. Since the nonlocal term
∫
R3 φuu2 in the energy functional of (1.2) is homogeneous

of degree 4, if γ > 4 from (A-R) then Ambrosetti-Rabinowitz condition guarantees boundedness of
Palais-Smale sequences as well as existence of a mountain pass geometry.

It is very natural for us to pose the question: Can we replace (A-R) with a weaker condition?
When V(x) is periodic or asymptotically periodic and f (u) does not satisfy the Ambrosetti-Rabinowitz
condition, Alves, Souto and Soares [2] established the existence of positive ground state solutions by
using the mountain pass theorem. In [14] Mao et al. studied the following Schrödinger-Poisson system
of the form 

−∆u + V(x)u + εφu = λ f (u), in R3,

−∆φ = u2, lim
|x|→+∞

φ(x) = 0, in R3,

u > 0, in R3,

where f satisfies 0 < 4F(s) ≤ s f (s), for s > 0 is small. Under the conditions that ε is small and λ
is large, the authors proved the existence of a positive solution. Differently from the above-mentioned
results, the purpose of this paper is to present some existence and multiplicity results of solutions of
problem (1.1) under the nonlinearity f (t) which possesses only conditions in a neighborhood of the
origin. More importantly, we consider the case that f satisfies 0 < γF(t) ≤ t f (t) where γ ∈ (3, 4],
for t > 0 is small. To the best of our knowledge, there are less results in the literatures on the case
γ ∈ (3, 4).

Firstly, we study problem (1.1) under the following conditions:
(V1): V ∈ C(R3,R), 0 < VL ≤ V(x) for all x ∈ R3 and V(x) is coercive, i.e., lim

|x|→∞
V(x) = ∞;

(V2): V ∈ C1(R3,R) and 2V(x) + ∇V(x) · x ≥ 0 for a.e. x ∈ R3 and ∇V(x) · x ∈ Lr(R3) for some
r ∈ [ 3

2 ,∞].
( f0): f (t) = 0 for t ≤ 0;
( f1): there exists α ∈ (4, 2∗) such that lim sup

t→0+

f (t)t
tα < +∞, where 2∗ = 6;

( f2): there exists β ∈ (4, 2∗) such that lim inf
t→0+

F(t)
tβ > 0;

( f3): there exists 3 < γ ≤ 4 such that 0 < γF(t) ≤ t f (t), for t > 0 is small ;
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( f ′1): there exists α ∈ (4, 2∗) such that lim sup
t→0

f (t)t
|t|α < +∞;

( f ′2): there exists β ∈ (4, 2∗) such that lim inf
t→0

F(t)
|t|β > 0, where F(t) =

∫ t

0
f (s)ds;

( f ′3): there exists γ̃ > 4 such that 0 < γ̃F(t) ≤ t f (t), for |t| small and t , 0;
( f4): f (−t) = − f (t), for |t| small.

Next, we give our main results.

Theorem 1.1. Assume (V1), (V2) and ( f0) − ( f3) hold. Then the problem (1.1) has a positive solution
u ∈ X (X is defined in Sect.2) for all sufficiently large λ.

Remark 1.1. (V2) is used to obtain a special bounded Palais-Smale sequence with Jeanjean’s
monotonicity trick. That ∇V(x) · x ∈ Lr(R3) for some r ∈ [ 3

2 ,∞] plays an important role in deriving
the Pohozaev identity for the weak solutions of (2.2).

To prove Theorem 1.1, we are faced with several difficulties. On one hand, due to the nonlinearity
f without any growth condition at infinity, the natural variational functional associated to (1.1) may
be not well defined. Inspired by work of Costa [8] and Huang [10], we modify f (t) to a new
well-defined nonlinearity. Furthermore by Moser iteration, we shall show that for large λ, the
solutions of the modified problem are the solutions of the original problem.

On the other hand, different from [8] and [14], since we don’t assume the global
Ambrosetti-Rabinowitz condition about f (t), the boundedness of Palais-Smale sequence seems hard
to verify. We use an argument developed by Jeanjean [11] to overcome this difficulty. Then Pohozaev
type identity [19] and the condition (V2) are used to construct a special bounded Palais-Smale
sequence for the modified functional Jλ (will be defined in Section 2) .

Theorem 1.2. Assume (V1), ( f ′1) − ( f ′3) and ( f4) hold. Then for any given positive integer k ≥ 1 the
problem (1.1) has k pairs of solutions ±ui ∈ X(i = 1, 2, ..., k) for all sufficiently large λ.

The key to prove Theorem 1.2 is a priori estimate of the weak solution for the modified problem.
Firstly, we modify f to a new nonlinearity h which is odd and satisfies the Ambrosetti-Rabinowitz
condition (see Lemma 2.1). By symmetric mountain pass theorem, the modified problem has a
sequence of weak solutions. Secondly, it will be shown that the solutions converge to zero in L∞-norm
as λ→ ∞. Therefore, for λ large, they are solutions of the original problem.

Remark 1.2. It is evident that the following function satisfies hypotheses ( f ′1) − ( f ′3) and ( f4):

f (t) = C1|t|α−2t + C2|t|q−2t,

where 4 < α < 2∗ < q < ∞ and C1, C2 are positive constants.

This paper is organized as follows. In Section 2, we describe the related mathematical tools and
give the proof of Theorem 1.1. Theorem 1.2 is proved in Section 3.

In what follows, C and Ci will denote positive generic constants.

2. Proof of Theorem 1.1

As usual, the norm of Ls(RN) (s ≥ 1) is denoted by | · |s. Define
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X =

{
u ∈ D1,2(R3) :

∫
R3

V(x)u2dx < ∞
}

endowed with the following norm

‖u‖ =

(∫
RN

(|∇u|2 + V(x)u2)dx
)1/2

.

By (V1), it well known that X ↪→ Lp(R3) continuously for p ∈ [2, 6], compactly for p ∈ [2, 6).
By the conditions ( f0), ( f1) and ( f2), there exist positive constants δ ∈ (0, 1

2 ), C3 and C4 such that

F(t) ≤ C3tα and F(t) ≥ C4tβ for 0 ≤ t ≤ 2δ. (2.1)

For the fixed δ > 0, we now consider d(t) ∈ C1(R,R) is a cut-off function satisfying

d(t) =

{
1, if t ≤ δ,
0, if t ≥ 2δ,

|d′(t)| ≤ 2
δ

and 0 ≤ d(t) ≤ 1 for t ∈ [δ, 2δ]. Define G(t) = d(t)F(t) + (1 − d(t))F∞(t), where

F∞(t) =

{
C3|t|α, if t > 0,
0, if t ≤ 0.

Set g(t) = G′(t). We observe that the conditions ( f0)–( f3) imply some properties of g(t).

Lemma 2.1. (1) g ∈ C(R,R), g(t) = 0, for all t ≤ 0 and g(t) = o(1) as t → 0+;
(2) lim

t→+∞

g(t)
t3 = +∞;

(3) there exists C5 > 0 such that g(t) ≤ C5tα−1, for all t ≥ 0;
(4) for any T > 0, there exists a constant C(T ) > 0 such that G(t) ≥ C(T )tβ for all t ∈ [0,T ];
(5) for all t > 0, we have 0 < γG(t) ≤ tg(t).

By [17], for every u ∈ H1(R3), there exists a unique φu ∈ D1,2(R3) such that

−∆φu = u2

and ∫
R3
∇φu · ∇vdx =

∫
R3

u2vdx, for all v ∈ D1,2(R3).

It has the following properties:

Lemma 2.2. For any u ∈ X ⊂ H1(R3), we have
(1) φu ≥ 0;
(2) φtu = t2φu;

(3) ‖φu‖
2
D1,2 =

∫
R3
φuu2dx ≤ C6|u|412/5 ≤ C7‖u‖4, where C6, C7 are constants.

We now consider the modified equation of (1.1) given by −∆u + V(x)u + φu = λg(u), in R3,

−∆φ = u2, lim
|x|→+∞

φ(x) = 0, in R3. (2.2)
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By definition of G and Lemma 2.1, for u ∈ X, the functional associated to (2.2) given by

Jλ(u) =
1
2

∫
R3

(
|∇u|2 + V(x)u2

)
dx +

1
4

∫
R3
φu(x)u2dx − λ

∫
R3

G(u)dx (2.3)

is well-defined.
Noticing that we can not ensure that the modified nonlinearity g satisfies the classical Ambrosetti-

Rabinowitz condition, the boundedness of Palais-Smale sequence seems hard to prove. The following
abstract result [11] is used to construct a special Palais-Smale sequence.

Proposition 1. Let X be a Banach space equipped with a norm ‖ · ‖X and let J ⊂ R+ be an interval.
{Φµ}µ∈J are C1-functionals on X of the form

Φµ(u) = A(u) − µB(u), for all µ ∈ J,

where B(u) ≥ 0 for all u ∈ X and either A(u) → +∞ or B(u) → +∞ as ‖u‖X → +∞. Suppose that
there exist two points u1, u2 ∈ X such that

cµ = inf
γ∈Γ

max
t∈[0,1]

Φµ(γ(t)) > max{Φµ(u1),Φµ(u2)}, for all µ ∈ J,

where Γ = {γ ∈ C([0, 1], X) : γ(0) = u1, γ(1) = u2}. Then, for almost every µ ∈ J, there exists a
sequence {un(µ)} ⊂ X such that
(1) {un(µ)} is bounded in X,
(2) Φµ(un(µ))→ cµ,
(3) Φ′µ(un(µ))→ 0, in X∗, where X∗ is dual space of X.
Furthermore, the map µ→ cµ is continuous from the left.

Consider a family of functionals

Jµ,λ(u) : =
1
2

∫
R3

(
|∇u|2 + V(x)u2

)
dx

+
1
4

∫
R3
φu(x)u2dx − µ

∫
R3
λG(u)dx, u ∈ X.

(2.4)

Denote A(u) = 1
2

∫
R3

(
|∇u|2 + V(x)u2

)
dx + 1

4

∫
R3 φu(x)u2dx, B(u) =

∫
R3 λG(u)dx and J = [1

2 , 1]. Then
Jµ,λ(u) = A(u) − µB(u). The next lemma ensures that Jµ,λ satisfies all assumptions of Proposition 1.

Lemma 2.3. Assume that (V1) and ( f0) − ( f2) hold. For all u ∈ X, then
(1) B(u) ≥ 0;
(2) A(u)→ ∞ as ‖u‖ → ∞;
(3) there exists u0 ∈ X, independent of µ, such that Jµ,λ(u0) < 0 for all µ ∈ [1

2 , 1];
(4) for all µ ∈ [ 1

2 , 1], it holds

cµ = inf
γ∈Γ

max
t∈[0,1]

Jµ,λ(γ(t)) > max{Jµ,λ(γ(0)), Jµ,λ(γ(1))},

where Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = u0}.
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Proof. From Lemma 2.1-(1) and (V1), (1) and (2) are proved directly. To prove (3), let us fix some
nonnegative radially symmetric function e(x) ∈ C∞0 (R3) \ {0}. Then, for t > 0, we have

J1/2,λ(te) =
t2

2

∫
R3
|∇e|2dx +

t2

2

∫
R3

V(x)e2dx +
t4

4

∫
R3
φe(x)e2dx −

1
2

∫
R3
λG(te)dx

≤
t4

2

(
1
t2 ‖e‖

2 +
1
2

∫
R3
φe(x)e2dx −

∫
R3

λG(te)
t4 dx

)
.

(2.5)

By Lemma 2.1-(2), it is easy to see that J1/2,λ(te) < 0 for t large.
It remains to prove (4). By Lemma 2.1-(3) and the Sobolev embedding theorem, we have

Jµ,λ(u) ≥
1
2

∫
R3

(|∇u|2 + V(x)u2)dx − µ
∫
R3
λG(u)dx

≥
1
2
‖u‖2 −C8‖u‖α.

From this, we get cµ > 0 and complete the proof. �

Remark 2.1. By Lemma 2.3 and Proposition 1, then for almost every µ ∈ [1
2 , 1], there exists a sequence

{un} ⊂ X satisfying

{un} is bounded in X, Jµ,λ(un)→ cµ and J′µ,λ(un)→ 0 in X∗. (2.6)

Lemma 2.4. The sequence {un} given in (2.6), up to subsequence, converges to a positive critical point
uµ of Jµ,λ with Jµ,λ(uµ) = cµ.

Proof. Since {un} is bounded in X, we have

un ⇀ uµ in X, un → uµ in Lα(R3), un → uµ a.e. in RN ,

for some uµ ∈ X. For all ϕ ∈ C∞0 (R3), using Lebesgue’s Theorem, we have that

〈J′µ,λ(un) − J′µ,λ(uµ), ϕ〉 → 0,

where we used un ⇀ uµ in X, Lemma 2.1-(3) and un → uµ in Lα(R3). Thus recalling that J′µ,λ(un) → 0
we indeed have J′µ,λ(uµ) = 0.

Next we prove un → uµ in X. Using Lemma 2.1-(3) and the fact un → uµ in Lα(R3), we get

lim
n→+∞

∫
R3

(g(un) − g(uµ))(un − uµ)dx = 0.

Hence
on(1) =〈J′µ,λ(un) − J′µ,λ(uµ), un − uµ〉

=

∫
R3

(
∇un − ∇uµ

)2
dx +

∫
R3

V(x)(un − uµ)2dx

+

∫
R3

(
φunun − φuµuµ

)
(un − uµ)dx

− µ

∫
R3
λ(g(un) − g(uµ))(un − uµ)dx

=‖un − uµ‖2 + on(1),

(2.7)
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where we used the elementary inequalities∣∣∣∣∣∫
R3

(
φunun − φuµuµ

)
(un − uµ)dx

∣∣∣∣∣
≤

∣∣∣∣∣∫
R3
φun(un − uµ)2dx

∣∣∣∣∣ +

∣∣∣∣∣∫
R3

(
φun − φuµ

)
uµ(un − uµ)dx

∣∣∣∣∣
≤ |φun |6|un − uµ|212/5 + |φun − φuµ |6|un − uµ|12/5|u|12/5.

(2.8)

Therefore, un → uµ in X. The positivity of uµ follows by a standard argument (see [19]). �

To show the above results are true when µ = 1, we need the following remark and lemmas.

Remark 2.2. Assume that (V1) and ( f0) − ( f2) hold. Then there exist {µn} ⊂ [1
2 , 1] and {uµn} ⊂ X \ {0}

such that lim
n→+∞

µn = 1, uµn > 0, Jµn,λ(uµn) = cµn ≤ c 1
2

and J′µn,λ
(uµn) = 0.

Lemma 2.5.(See [12]) If u ∈ X is a critical point of Jµ,λ and (V1) holds, then

1
2

∫
R3
|∇u|2dx +

3
2

∫
R3

V(x)u2dx +
5
4

∫
R3
φuu2dx

+
1
2

∫
R3
∇V(x) · xu2dx − 3µ

∫
R3
λG(u)dx = 0.

(2.9)

Lemma 2.6. Assume that (V2) and ( f0) − ( f3) hold. Then the sequence {uµn} obtained in Remark 2.2 is
bounded with respect to µn in X.

Proof. Using the fact Jµn,λ(uµn) ≤ c 1
2
, 〈J′µn,λ

(uµn), uµn〉 = 0 and Lemma 2.5, we have(
3 −

γ

2

)
c 1

2
≥

(
3 −

γ

2

)
Jµn,λ(uµn) − 〈J

′
µn,λ

(uµn), uµn〉 +

(
γ

2
− 1

)
· (2.9)L

and

(3 −
γ

2
)c 1

2
≥ (

γ

4
−

1
2

)
∫
R3

(2V(x) + ∇V(x) · x)u2
µn

dx

+ (
γ

2
−

3
2

)
∫
R3
φuµn

u2
µn

dx + λ

∫
R3

(
uµng(uµn) − γG(uµn)

)
dx

≥ (
γ

2
−

3
2

)
∫
R3
φuµn

u2
µn

dx.

(2.10)

Using (V2), Lemma 2.1 and the fact that 3 < γ ≤ 4, it implies that {
∫
R3 φuµn

u2
µn

dx} is bounded.
Next we prove that ‖uµn‖ is bounded. By 〈J′µn,λ

(uµn), uµn〉 = 0, we obtain

γc 1
2
≥

(
γ

2
− 1

) ∫
R3

(
|∇uµn |

2 + V(x)uµn

)
dx + (

γ

4
− 1)

∫
R3
φuµn

u2
µn

dx

+

∫
R3

(
uµng(uµn) − γG(uµn)

)
dx

≥

(
γ

2
− 1

) ∫
R3

(
|∇uµn |

2 + V(x)uµn

)
dx −

(4 − γ)(6 − γ)
4γ − 12

c 1
2
,

then we complete the proof. �
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Lemma 2.7. Assume that (V1), (V2) and ( f0) − ( f3) hold. Then problem (2.2) has at least one positive
solution.

Proof. Using Remark 2.2 and Lemma 2.6, there exist {µn} ⊂ [ 1
2 , 1] and a bounded sequence {uµn} ⊂

X \ {0} such that

lim
n→+∞

µn = 1, Jµn,λ(uµn) = cµn , J′µn,λ
(uµn) = 0.

Furthermore

lim
n→∞

Jλ(uµn) = lim
n→∞

(
Jµn,λ(uµn) + (µn − 1)

∫
R3
λG(uµn)dx

)
= lim

n→∞
cµn = c1,

where we used the fact that µ 7→ cµ is continuous from the left. By the similar argument, we get

J′λ(uµn)→ 0 in X∗.

Thus {uµn} is a bounded Palais-Smale sequence for Jλ and lim
n→∞

Jλ(uµn) = c1. By the argument of Lemma
2.4 again, we complete the proof. �

Indeed, the critical points of Jλ with L∞-norm not more than δ are also the weak solutions of problem
(1.1). So next we shall study the L∞-estimates for solutions of (2.2), which is essentially contained in
the work of Brezis-Kato.

Lemma 2.8. Assume (V1), (V2), ( f0) − ( f3) hold and u ∈ X is a weak solution of problem (2.2). Then
u ∈ L∞(R3). Moreover,

|u|∞ ≤ C9λ
1

2∗−α ‖u‖
2∗−2
2∗−α , (2.11)

where C9 > 0 only depends on α.

Proof. Let u ∈ X be a weak solution of −∆u + V(x)u + φu = λg(u), in R3,

−∆φ = u2, lim
|x|→+∞

φ(x) = 0, in R3, (2.12)

which is equivalent to∫
R3
∇u · ∇ϕdx +

∫
R3

V(x)uϕdx +

∫
R3
φuuϕdx − λ

∫
R3

g(u)ϕdx = 0, for all ϕ ∈ X. (2.13)

From the above Lemma 2.7, we know that u > 0. Let T > 0, and define

uT =

{
u, if 0 < u ≤ T,
T, if u ≥ T.

Choosing ϕ = u2(η−1)
T u in (2.13), where η > 1, we get∫

R3
|∇u|2 · u2(η−1)

T dx + 2(η − 1)
∫
{x|u(x)<T }

u2(η−1)−1
T u|∇u|2dx

+

∫
R3
φu(x)u2u2(η−1)

T dx +

∫
R3

V(x)u2u2(η−1)
T dx

=λ

∫
R3

g(u)u2(η−1)
T udx.
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Combining Lemma 2.1-(3) and the nonnegativity of the second, the third and the fourth terms in the
left side of the above equation, we obtain∫

R3
|∇u|2 · u2(η−1)

T dx ≤ λ
∫
R3

g(u)u2(η−1)
T udx ≤ λC5

∫
R3

uαu2(η−1)
T dx. (2.14)

On the other hand, by the Sobolev inequality, we obtain(∫
R3

(uuη−1
T )2∗dx

) 2
2∗

≤ C10

∫
R3
|∇(uuη−1

T )|2dx

≤ C11

∫
R3
|∇u|2u2(η−1)

T dx + C10(η − 1)2
∫
R3
|∇u|2u2(η−1)

T dx

≤ C12η
2
∫
R3
|∇u|2u2(η−1)

T dx,

where we used the fact that (a + b)2 ≤ 2(a2 + b2).
By (2.14), the Hölder inequality and the Sobolev embedding theorem, we have(∫

R3
(uuη−1

T )2∗dx
) 2

2∗

≤ λC13η
2
∫
R3

uα−2u2u2(η−1)
T dx

≤ λC13η
2
(∫
R3

u2∗dx
) α−2

2∗
(∫
R3

(uuη−1
T )

22∗
2∗−α+2 dx

) 2∗−α+2
2∗

≤ λC14η
2‖u‖α−2

(∫
R3

u
η22∗

2∗−α+2 dx
) 2∗−α+2

2∗

,

where we used the fact that 0 ≤ uT ≤ u.
In what follows, taking ζ = 22∗

2∗−α+2 , we get(∫
R3

(uuη−1
T )2∗dx

) 2
2∗

≤ λC14η
2‖u‖α−2|u|2ηηζ .

Using the Fatou’s lemma, letting T → +∞, it follows that

|u|η2∗ ≤ (λC14η
2‖u‖α−2)

1
2η |u|ηζ . (2.15)

Define ηn+1ζ = 2∗ηn, where n = 0, 1, 2, ... and η0 = 2∗+2−α
2 . By (2.15) we have

|u|η12∗ ≤ (λC14η
2
1‖u‖

α−2)
1

2η1 |u|2∗η0

≤ (λC14‖u‖α−2)
1

2η1
+ 1

2η0 η
1
η0
0 η

1
η1
1 |u|2∗ .

By iteration we have

|u|ηn2∗ ≤ (λC14‖u‖α−2)
1

2η0

∑n
i=0( ζ

2∗ )i

(η0)
1
η0

∑n
i=0( ζ

2∗ )i

( 2∗
ζ

)
1
η0

∑n
i=0 i( ζ

2∗ )i

|u|2∗ .

Thus, we obtain |u|∞ ≤ C9λ
1

2∗−α ‖u‖
2∗−2
2∗−α . �

By the similar argument in Lemma 2.6, we can obtian the following lemma.
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Lemma 2.9. Let λ > VL
2 and uλ be a critical point of Jλ with Jλ(uλ) = c1. Then there exists C16 > 0

(independent of λ) such that
‖uλ‖2 ≤ C16c1. (2.16)

Proof of Theorem 1.1. Let u0 ∈ C∞0 (RN) ∩ X \ {0} be a nonnegative function such that Jλ(u0) < 0.
Then, the functional Jλ has the mountain pass geometry and we can define

dλ = inf
γ∈Γ

max
t∈[0,1]

Jλ(γ(t)) > 0,

where Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = u0}. By Lemma 2.7, there exists a positive critical point
uλ of Jλ with Jλ(uλ) = dλ. And more remarkable dλ = c1.

Furthermore, taking T = |u0|∞, from Lemma 2.1-(4), we obtain

dλ ≤ max
t∈[0,1]

Jλ(tu0)

≤ max
t∈[0,1]

(
t2

2

∫
R3

(|∇u0|
2 + V(x)u2

0)dx +
t4

4

∫
R3
φu0u

2
0dx − λ

∫
R3

G(tu0)dx
)

≤ max
t∈[0,1]

(
t2

2

∫
R3

(|∇u0|
2 + V(x)u2

0 +
1
2
φu0u

2
0)dx −C17λtβ

∫
R3

uβ0dx
)

≤ C18λ
− 2
β−2 .

(2.17)

By (2.11), (2.16) and (2.17), we see that

|uλ|∞ ≤ C19λ
β−2∗

2∗−α .

Then there exists λ0 > 0 such that for all λ > λ0, we get

|uλ|∞ ≤ δ,

where δ is fixed in (2.1). Thus, the uλ is a positive solution of the original problem (1.1).

3. Proof of Theorem 1.2

We start by finding that the conditions ( f ′1) and ( f ′2) imply the existence of positive constants C20,C21

such that
F(t) ≤ C20|t|α (3.1)

and
F(t) ≥ C21|t|β (3.2)

with |t| small. Consider ρ(t) ∈ C1(R,R) an even cut-off function satisfying:

ρ(t) =

{
1, if |t| ≤ δ,
0, if |t| ≥ 2δ,

0 ≤ ρ(t) ≤ 1, tρ′(t) ≤ 0 and |tρ′(t)| ≤ 2
δ
, where 0 < δ < 1

2 is chosen such that (3.1), (3.2) hold for |t| ≤ 2δ
and ( f4) holds for |t| ≤ δ. Define

H(t) = ρ(t)F(t) + (1 − ρ(t))F̃∞(t) and h(t) = H′(t),
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where F̃∞(t) = C22|t|α. From ( f ′1) and the definitions of ρ(t) and h(t), for u ∈ X we have

|h(u)| ≤ C23|u|α−1. (3.3)

Lemma 3.1.(See [8]) If f satisfies ( f ′1) − ( f ′3), then for all t , 0, we have

0 < θH(t) ≤ th(t),

where θ = min{α, γ̃}.

We now consider another modified equation of (1.1) given by −∆u + V(x)u + φu = λh(u), in R3,

−∆φ = u2, lim
|x|→+∞

φ(x) = 0, in R3. (3.4)

By the definition of H(t) and (3.3), the functional associated to (3.4) stated by

Iλ(u) =
1
2

∫
R3

(
|∇u|2 + V(x)u2

)
dx +

1
4

∫
R3
φuu2dx − λ

∫
R3

H(u)dx, u ∈ X (3.5)

is well-defined. It is well known that its critical points are the weak solutions of (3.4).
The goal of this section is to prove Theorem 1.2. To this end, we use the Lemma 3.1 to get the

boundedness of Palais-Smale sequence. Moreover, by the similar argument in Lemma 2.4, it is easy
to show that Iλ satisfies Palais-Smale condition. These are standard results which can be found in
textbooks and no proof is given here.

Lemma 3.2. Assume that ( f ′1) − ( f ′3) are satisfied. If u ∈ X is a critical point of Iλ, then

‖u‖2 ≤ C24Iλ(u), (3.6)

where C24 depends on θ.

The proof of the above result is quite similar to the one used in Lemma 2.6 and so is omitted.
Since X is a real, reflexive, and separable Banach space, there exists {e j} j∈N ⊂ X such that

X = span{e j : j = 1, 2, ...}.

We denote

Yk = span{e1, ..., ek}, Zk = span{ek+1, ...}.

Lemma 3.3. Set θk,λ = sup
u∈Yk

Iλ(u). If λ > 1, then

θk,λ ≤ C25λ
− 2
β−2 , (3.7)

where C25 depends on α, β and k.

Proof. We notice that δ > 0 was chosen in Section 3 such that

H(t) = F̃∞(t) = C22|t|α for |t| ≥ 2δ, (3.8)

H(t) ≥ F(t) ≥ C26|t|β for |t| ≤ 2δ. (3.9)

For u ∈ Yk, denote Ω1 = {x ∈ R3 : |u(x)| ≥ 2δ}, Ω2 = {x ∈ R3 : |u(x)| < 2δ}, and let u1 = u|Ω1 ,
u2 = u|Ω2 . Since all norms in Yk are equivalent, from (3.8) and (3.9) we obtain
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R3

H(u1)dx ≥ Ĉ(k)|u1|
α
2

and ∫
R3

H(u2)dx ≥ Ĉ(k)|u2|
β
2,

where Ĉ(k) is a positive constant. By the same reason, we can define

γk = sup{‖u‖ : u ∈ Yk, |u|2 = 1} < ∞.

Then for u ∈ Yk, it follows that

Iλ(u) ≤
γk

2
|u|22 +

C7

4
‖u‖4 − λĈ(k)|u1|

α
2 − λĈ(k)|u2|

β
2

≤
γk

2
|u1|

2
2 +

C7γk

4
|u1|

4
2 − λĈ(k)|u1|

α
2 +

γk

2
|u2|

2
2 +

C7γk

4
|u2|

4
2 − λĈ(k)|u2|

β
2

≤ C1(k)λ−
2
α−2 + C2(k)λ−

2
β−2 .

For λ > 1, by 4 < α ≤ β < 2∗, we have

θk,λ ≤ C25λ
− 2
β−2 ,

where C25 := C1(k) + C2(k). �

Lemma 3.4. Assume that u ∈ X is a weak solution of problem (3.4). Then u ∈ L∞(RN). Moreover,

|u|∞ ≤ C27λ
1

2∗−α ‖u‖
2∗−2
2∗−α , (3.10)

where C27 > 0 only depends on α.

The proof of Lemma 3.4 is quite similar to Lemma 2.8 and so is omitted.
To prove Theorem 1.2, we will apply the following symmetric mountain pass theorem due to

Rabinowitz [16].

Proposition 2. Let X be an infinite dimensional Banach space, J ∈ C1(X,R) be even, satisfy (PS)
condition and J(0) = 0. If X = Y

⊕
Z with dim Y < +∞, and J satisfies

(1) there are constants ρ, α > 0 such that J|∂Bρ∩Z ≥ α,
(2) for any finite dimensional subspace W ⊂ X, there is an R = R(W) such that J ≤ 0 on W \ BR(W),
then J has a sequence of critical values.

Remark 3.1. We point out that Iλ satisfies all assumptions of Proposition 2. By Proposition 2, then Iλ
possesses a sequence of critical points.

Proof of Theorem 1.2. Fix an integer k. Choose R > 0 such that Iλ(u) ≤ 0 for all u ∈ Yk with ‖u‖ ≥ R,
and for all λ ≥ 1. For BR = {u ∈ X : ‖u‖ < R}, let D = BR ∩ Yk. Define

Γ := {γ ∈ C(D, X) : γ is odd, γ(u) = u, if ‖u‖ = R}.

Let i(A) be the genus of symmetric subset A. For j ≤ k, we denote

Θ j = {γ(D \ B) : γ ∈ Γ, i(B) ≤ k − j}
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and

c j,λ = inf
A∈Θ j

sup
u∈A

Iλ(u).

From Proposition 2 and Remark 3.1, and under our conditions on h, we get

0 < c1,λ ≤ c2,λ ≤ ... ≤ ck,λ.

Moreover, they are also critical values of Iλ and there exist at least 2k critical points {±u j,λ}
k
j=1 at these

critical values. Since Id ∈ Γ, the definition of Θ j and Lemma 3.3, we obtain

c j,λ ≤ θ j,λ ≤ C( j)λ−
2
β−2 . (3.11)

By Lemmas 3.2–3.4, we have

|u j,λ|∞ ≤ C28λ
β−2∗

(β−2)(2∗−α) .

Since 4 < β < 2∗, there exists λ1 > 0 such that |u j,λ|∞ ≤ δ, for all λ > λ1. Thus, ±u j,λ( j = 1, 2, · · · , k)
are weak solutions of problem (1.1).
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