Research article

On the Jensen’s inequality and its variants

  • Received: 22 October 2019 Accepted: 07 January 2020 Published: 16 January 2020
  • MSC : 26A51, 47A63, 26B25, 39B62, 26D15

  • The main purpose of this paper is to discuss operator Jensen inequality for convex functions, without appealing to operator convexity. Several variants of this inequality will be presented, and some applications will be shown too.

    Citation: Elahe Jaafari, Mohammad Sadegh Asgari, Mohsen Shah Hosseini, Baharak Moosavi. On the Jensen’s inequality and its variants[J]. AIMS Mathematics, 2020, 5(2): 1177-1185. doi: 10.3934/math.2020081

    Related Papers:

  • The main purpose of this paper is to discuss operator Jensen inequality for convex functions, without appealing to operator convexity. Several variants of this inequality will be presented, and some applications will be shown too.


    加载中


    [1] M. K. Bakula, J. Pečarić, J. Perić, On the converse Jensen inequality, Appl. Math. Comput., 218 (2012), 6566-6575.
    [2] M. D. Choi, A. Schwarz, Inequality for positive linear maps on C*-algebras, Illinois J. Math., 18 (1974), 565-574. doi: 10.1215/ijm/1256051007
    [3] S. Furuichi, H. R. Moradi, A. Zardadi, Some new Karamata type inequalities and their applications to some entropies, Rep. Math. Phys., 84 (2019), 201-214. doi: 10.1016/S0034-4877(19)30083-7
    [4] F. Hansen, J. Pečarić, J. Perić, Jensen's operator inequality and it's converses, Math. Scand., 100 (2007), 61-73. doi: 10.7146/math.scand.a-15016
    [5] L. Horváth, K. A. Khan, J. Pečarić, Cyclic refinements of the different versions of operator Jensen's inequality, Electron. J. Linear Algebra, 31 (2016), 125-133. doi: 10.13001/1081-3810.3098
    [6] P. Lah, M. Ribarić, Converse of Jensen's inequality for convex functions, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., 460 (1973), 201-205.
    [7] J. S. Matharu, M. S. Moslehian, J. S. Aujla, Eigenvalue extensions of Bohr's inequality, Linear Algebra Appl., 435 (2011), 270-276. doi: 10.1016/j.laa.2011.01.023
    [8] A. McD. Mercer, A variant of Jensen's inequality, J. Inequal. Pure Appl. Math., 4 (2003), 73.
    [9] J. Mićić, H. R. Moradi, S. Furuichi, Choi-Davis-Jensen's inequality without convexity, J. Math. Inequal., 12 (2018), 1075-1085.
    [10] B. Mond, J. Pečarić, On Jensen's inequality for operator convex functions, Houston J. Math., 21 (1995), 739-753.
    [11] H. R. Moradi, S. Furuichi, F. C. Mitroi-Symeonidis, An extension of Jensen's operator inequality and its application to Young inequality, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 113 (2019), 605-614.
    [12] H. R. Moradi, M. E. Omidvar, M. Adil Khan, Around Jensen's inequality for strongly convex functions, Aequationes Math., 92 (2018), 25-37. doi: 10.1007/s00010-017-0496-5
    [13] M. Sababheh, H. R. Moradi, S. Furuichi, Integrals refining convex inequalities, Bull. Malays. Math. Sci. Soc., 2019 (2019), 1-17.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4234) PDF downloads(496) Cited by(4)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog