Research article Special Issues

Periodic mild solutions of impulsive fractional evolution equations

  • Received: 30 September 2019 Accepted: 19 November 2019 Published: 06 December 2019
  • MSC : 34A08, 34A37, 34C25

  • This paper studies the periodic mild solutions of impulsive fractional evolution equations. Firstly, the existence and stability of periodic solutions of impulsive fractional differential equations with varying lower limits for general impulses and small shifted impulses are considered. Secondly, the existence of periodic solutions of impulsive fractional differential equations with fixed lower limits is proved. Lastly, an example is given to demonstrate the result.

    Citation: Lulu Ren, JinRong Wang, Michal Fečkan. Periodic mild solutions of impulsive fractional evolution equations[J]. AIMS Mathematics, 2020, 5(1): 497-506. doi: 10.3934/math.2020033

    Related Papers:

  • This paper studies the periodic mild solutions of impulsive fractional evolution equations. Firstly, the existence and stability of periodic solutions of impulsive fractional differential equations with varying lower limits for general impulses and small shifted impulses are considered. Secondly, the existence of periodic solutions of impulsive fractional differential equations with fixed lower limits is proved. Lastly, an example is given to demonstrate the result.


    加载中


    [1] M. Fečkan, J. Wang, M. Pospíšil, Fractional-Order Equations and Inclusions, De Gruyter, 2017.
    [2] J. Wang, M. Fečkan, Y. Zhou, A survey on impulsive fractional differential equations, Fract. Calc. Appl. Anal., 19 (2016), 806-831.
    [3] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science, Amsterdam, 2006.
    [4] Y. Zhou, Attractivity for fractional differential equations in Banach space, Appl. Math. Lett., 75 (2018), 1-6. doi: 10.1016/j.aml.2017.06.008
    [5] Y. Zhou, Attractivity for fractional evolution equations with almost sectorial operators, Fract. Calc. Appl. Anal., 21 (2018), 786-800. doi: 10.1515/fca-2018-0041
    [6] Y. Zhou, L. Shangerganesh, J. Manimaran, et al. A class of time-fractional reaction-diffusion equation with nonlocal boundary condition, Math. Meth. Appl. Sci., 41 (2018), 2987-2999. doi: 10.1002/mma.4796
    [7] E. Kaslik, S. Sivasundaram, Non-existence of periodic solutions in fractional-order dynamical systems and a remarkable difference between integer and fractional-order derivatives of periodic functions, Nonlinear Analysis: Real World Applications, 13 (2012), 1489-1497. doi: 10.1016/j.nonrwa.2011.11.013
    [8] J. Wang, M. Fečkan, Y. Zhou, Nonexistence of periodic solutions and asymptotically periodic solutions for fractional differential equations, Commun. Nonlinear Sci., 18 (2013), 246-256. doi: 10.1016/j.cnsns.2012.07.004
    [9] L. Ren, J. Wang, M. Feckan, Asymptotically periodic solutions for Caputo type fractional evolution equations, Fract. Calc. Appl. Anal., 21 (2018), 1294-1312. doi: 10.1515/fca-2018-0068
    [10] C. Cuevas, J. Souza, S-asymptotically ω-periodic solutions of semilinear fractional integrodifferential equations, Appl. Math. Lett., 22 (2009), 865-870. doi: 10.1016/j.aml.2008.07.013
    [11] J. Diblík, M. Fečkan, M. Pospíšil, Nonexistence of periodic solutions and S-asymptotically periodic solutions in fractional difference equations, Appl. Math. Comput., 257 (2015), 230-240.
    [12] M. Fečkan, J. Wang, Periodic impulsive fractional differential equations, Adv. Nonlinear Anal., 8 (2019), 482-496.
    [13] Y. Zhou, F. Jiao, Existence of mild solutions for fractional neutral evolution equations, Comput. Math. Appl., 59 (2010), 1063-1077. doi: 10.1016/j.camwa.2009.06.026
    [14] M. Fečkan, J. Wang, Y. Zhou, Periodic solutions for nonlinear evolution equations with noninstantaneous impulses, Nonautonomous Dynamical Systems, 1 (2014), 93-101.
    [15] H. Ye, J. Gao, Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075-1081. doi: 10.1016/j.jmaa.2006.05.061
    [16] B. M. Garay, P. Kloeden, Discretization near compact invariant sets, Random and Computational Dynamics, 5 (1997), 93-124.
    [17] I. Murdock, C. Robinson, Qualitative dynamics from asymptotic expansions: Local theory, J. Differential Equations, 36 (1980), 425-441. doi: 10.1016/0022-0396(80)90059-5
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3798) PDF downloads(522) Cited by(5)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog