Citation: Youness Chatibi, El Hassan El Kinani, Abdelaziz Ouhadan. Lie symmetry analysis of conformable differential equations[J]. AIMS Mathematics, 2019, 4(4): 1133-1144. doi: 10.3934/math.2019.4.1133
[1] | S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Yverdon: Gordon and Breach Science Publishers, 1993. |
[2] | M. Dalir and M. Bashour, Applications of fractional calculus, Appl. Math. Sci., 4 (2010), 1021-1032. |
[3] | R. Hilfer, Applications of Fractional Calculus in Physics, Singapore: Word Scientific, 2000. |
[4] | I. Podlubny, Fractional Differential Equations, New York: Academic Press, 1999. |
[5] | R. Khalil, M. A. Horani, A. Yousef, et al. A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70. doi: 10.1016/j.cam.2014.01.002 |
[6] | T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57-66. doi: 10.1016/j.cam.2014.10.016 |
[7] | D. Zhao and M. Luo, General conformable fractional derivative and its physical interpretation, Calcolo, 54 (2017), 903-917. doi: 10.1007/s10092-017-0213-8 |
[8] | J. H. He, Homotopy perturbation method: A new nonlinear analytical technique, Appl. Math. Comput., 135 (2003), 73-79. |
[9] | F. Tchier, M. Inc and A. Yusuf, Symmetry analysis, exact solutions and numerical approximations for the space-time Carleman equation in nonlinear dynamical systems, Eur. Phys. J. Plus, 134 (2019), 1-18. doi: 10.1140/epjp/i2019-12286-x |
[10] | A. Yusuf, M. Inc and M. Bayram, Soliton solutions for Kudryashov-Sinelshchikov equation, Sigma J. Eng. Nat. Sci., 37 (2019), 439-444. |
[11] | M. Inc, A. Yusuf, A. I. Aliyu, et al. Dark and singular optical solitons for the conformable space-time nonlinear Schrödinger equation with Kerr and power law nonlinearity, Optik, 162 (2018), 65-75. doi: 10.1016/j.ijleo.2018.02.085 |
[12] | M. Inc, A. Yusuf, A. I. Aliyu, et al. Lie symmetry analysis and explicit solutions for the time fractional generalized Burgers-Huxley equation, Opt. Quant. Electron., 50 (2018), 1-16. doi: 10.1007/s11082-017-1266-2 |
[13] | A. Akgül, Reproducing kernel method for fractional derivative with non-local and non-singular kernel, In: Fractional Derivatives with Mittag-Leffler Kernel, Series of Studies in Systems, Decision and Control, Springer, Cham, 194 (2019), 1-12. |
[14] | A. Akgül, A novel method for a fractional derivative with non-local and non-singular kernel, Chaos Soliton Fractals, 114 (2018), 478-482. doi: 10.1016/j.chaos.2018.07.032 |
[15] | M. G. Sakar, O. Saldir and A. Akgül, A Novel Technique for Fractional Bagley-Torvik Equation, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci., (2018), 1-7. |
[16] | M. Modanli and A. Akgül, Numerical solution of fractional telegraph differential equations by theta-method, Eur. Phys. J. Spec. Top., 226 (2017), 3693-3703. doi: 10.1140/epjst/e2018-00088-6 |
[17] | E. K. Akgül, Solutions of the linear and nonlinear differential equations within the generalized fractional derivatives, Chaos, 29 (2019), Article ID 023108. |
[18] | E. K. Akgül, B. Orcan and A. Akgül, Solving higher-order fractional differential equations by reproducing kernel Hilbert space method, J. Adv. Phys., 7 (2018), 98-102. doi: 10.1166/jap.2018.1392 |
[19] | N. H. Ibragimov, CRC Handbook of Lie Group Analysis of Differential Equations, Volume I: Symmetries, Exact Solutions, and Conservation Laws, CRC Press, Boca Raton, FL, 1994. |
[20] | N. H. Ibragimov, Elementary Lie Group Analysis and Ordinary Differential Equations, Wiley, Chichester, 1999. |
[21] | P. J. Olver, Application of Lie Groups to Differential Equation, Springer, 1986. |
[22] | G. W. Bluman and S. Kumei, Symmetries and Differential Equations, Cambridge Texts in Applied Mathematics, Springer, 1989. |
[23] | R. K. Gazizov, A. A. Kasatkin and S. Y. Lukashchuk, Continuous transformation groups of fractional differential equations, Vestnik USATU, 9 (2007), 125-135. |
[24] | E. H. El Kinani and A. Ouhadan, Exact solutions of time fractional Kolmogorov equation by using Lie symmetry analysis, J. Fract. Calc. Appl., 5 (2014), 97-104. |
[25] | A. Ouhadan and E. H. El Kinani, Lie symmetry analysis of some time fractional partial differential equations, Int. J. Mod. Phys. Conf. Ser., 38 (2015), Article ID 1560075. |
[26] | T. Bakkyaraj and R. Sahadevan, Group formalism of Lie transformations to time-fractional partial differential equations, Pramana J. Phys., 85 (2015), 849-860. doi: 10.1007/s12043-015-1103-8 |
[27] | T. Bakkyaraj and R. Sahadevan, Invariant analysis of nonlinear fractional ordinary differential equations with Riemann-Liouville fractional derivative, Nonlinear Dyn., 80 (2015), 447-455. doi: 10.1007/s11071-014-1881-4 |