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1. Introduction

In recent years, fractional differential equations have received considerable attention owing to their
applicability in different fields of sciences such as chemistry, biology, diffusion, control theory,
rheology, viscoelasticity and so on [1–4]. Many authors has been shown that the fractional derivatives
used in this theory lost some of the basic properties that usual derivatives have such as the product
rule and the chain rule. Recently, a conformable derivative is introduced and it satisfies the basic
properties of usual derivatives [5–7].

To construct exact solutions for fractional differential equations is not an easy task. Therefore,
several methods such as homotopy perturbation method [8], sub-ODE method [9,10], generalized tanh
method [11], residual power series method [9, 12] and so on [13–18] are developed to obtain solutions
of some nonlinear fractional differential equations.

Lie symmetry analysis or Lie group method has become of great interest in many aspects of the
exact sciences [19–22], and has been extensively applied to construct exact solutions of ordinary and
partial differential equations. However, this method has not been used much to investigate invariance
properties of fractional partial differential equations. Gazizov et al. [23] have established the
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prolongation formula in the case of fractional differential equations in which the fractional derivative
is considered in the sense of Caputo and Riemann-Liouville. Their fundamental work has become a
key to investigate symmetry properties of some fractional differential equations and a crucial tool for
other works, see for example [9, 12, 20–27].

In this work, we develop Lie symmetry method to establish the prolongation formula admitted
by a conformable differential equations. The obtained prolongation formula is given in case of the
dependent variables that are supposed to be differentiable functions. This method is used to obtain
some solutions of conformable heat equation.

This paper is organized as follows: In Section 2, we recall some basic properties of conformable
derivatives. Section 3 is devoted to determine the prolongation formula in the case of a conformable
ordinary differential equation. While in Section 4, we establish the prolongation formula of a
conformable partial differential equation, the method is illustrated by conformable heat equation. We
concluded the paper in the last section by some comments.

2. Preliminaries and notations

Definition 2.1. We consider f : R→ R is a function, and α ∈ (0, 1].

The left conformable derivative of order α is defined by

aTα
t f (t) = lim

h→0

f (t + h(t − a)1−α) − f (t)
h

. (2.1)

The right conformable derivative of order α is

tTα
b f (t) = lim

h→0

f (t − h(b − t)1−α) − f (t)
h

. (2.2)

If a = 0 and f is α-differentiable in some (0, x), i.e., limt→0+ f (α)(t) exists, so we define

f (α)(0) = lim
t→0+

f (α)(t).

We can write f (α)(t) for 0Tα
t f (t) to denote the conformable derivative of f of order α. In addition, if the

conformable derivative of f of order α exists, then we simply say f is α-differentiable. Some useful
formulas and properties of conformable derivative are summarized in [5, 6] and here we present some
of its basic properties.

Proposition 1. Let be f and g two α-differentiable functions at any point t > a such that g , 0, and
λ, µ ∈ R, we have

aTα
t (λ f + µg) = λ aTα

t f + µ aTα
t g, (2.3)

aTα
t ( f g) = f aTα

t g + g aTα
t f , (2.4)

aTα
t

( f
g

)
=

g aTα
t f − f aTα

t g
g2 . (2.5)
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Note that the above properties (2.4) and (2.5) are not preserved with other known fractional
derivatives [4]. Furthermore, if α, β in (0, 1), and f is a 2-times differentiable, we have non
commutative and non stability properties of conformable derivatives.

aTα
t (aT β

t f ) ,a T β
t (aTα

t f ), and aTα
t (aT β

t f ) ,a Tα+β
t f . (2.6)

Proposition 2. If f and g two functions such that g is differentiable in all t, and f is differentiable in
all g(t). we have

aTα
t ( f ◦ g)(t) = f

′

(g(t))aTα
t g(t). (2.7)

3. Prolongation formula for conformable ordinary differential equations

In this section, we consider the one parameter group of point transformations with y = y(t) is a
differentiable function,

t̄ = ϕ(t, y, ε) = t + εξ(t, y) + o(ε2), (3.1)

ȳ = φ(t, y, ε) = y + εη(t, y) + o(ε2). (3.2)

Where

ξ(t, y) =
∂ϕ

∂ε

∣∣∣∣∣
ε=0

and η(t, y) =
∂φ

∂ε

∣∣∣∣∣
ε=0
. (3.3)

Along with (3.1) and (3.2), we consider the corresponding infinitesimal operator

X = ξ(t, y)
∂

∂t
+ η(t, y)

∂

∂y
. (3.4)

With the condition of invariance of the equation t = 0, we obtain

ξ(t, y(t))|t=0 = 0. (3.5)

Theorem 3.1. The infinitesimal transformation of the conformable derivative definition, we have

0Tα
t̄ ȳ(t̄) = 0Tα

t y(t) + εη(α) + o(ε2), (3.6)

where

η(α) = t1−αηt +

(
ηy +

1 − α
t

ξ − ξt

)(
0Tα

t y(t)
)
− tα−1ξy

(
0Tα

t y(t)
)2
. (3.7)

Proof. According to the conformable derivative definition, we have

0Tα
t̄ ȳ(t̄) = lim

h→0

ȳ(t̄ + ht̄1−α) − ȳ(t̄)
h

(3.8)

= t̄1−α lim
h→0

ȳ(t̄ + ht̄1−α) − ȳ(t̄)
ht̄1−α (3.9)

= t̄1−αdȳ
dt̄
. (3.10)
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In addition, from Eqs. (3.1) and (3.2), we get

dȳ
dt̄

=
y
′

+ ε(ηt + ηyy
′

) + o(ε2)
1 + ε(ξt + ξyy

′) + o(ε2)
, (3.11)

and,

t̄1−α =

(
t + εξ(t, y) + o(ε2)

)1−α

(3.12)

= t1−α
(
1 +

ε

t
ξ
)1−α

+ o(ε2) (3.13)

= t1−α
(
1 +

(1 − α)ε
t

ξ
)

+ o(ε2). (3.14)

Furthermore,
1

1 + ε(ξt + ξyy
′) + o(ε2)

= 1 − ε(ξt + ξyy
′

) + o(ε2). (3.15)

Substituting expressions (3.11), (3.14) and (3.15) in Eq. (3.10), we get

0Tα
t̄ ȳ(t̄) =

(
t1−α

(
1 +

(1 − α)ε
t

ξ
)

+ o(ε2)
)(

y
′

+ ε(ηt + ηyy
′

) + o(ε2)
)

×

(
1 − ε(ξt + ξyy

′

) + o(ε2)
)

(3.16)

=

(
t1−αy

′

+ εt1−α
(
ηt +

(
ηy +

1 − α
t

ξ
)
y
′
)

+ o(ε2)
)

×

(
1 − ε(ξt + ξyy

′

) + o(ε2)
)

(3.17)

= t1−αy
′

+ ε
[
t1−α

(
ηt +

(
ηy +

1 − α
t

ξ
)
y
′
)
− t1−αy

′

(ξt + ξyy
′

)
]

+ o(ε2).

Consequently,
0Tα

t̄ ȳ(t̄) = 0Tα
t y(t) + εη(α) + o(ε2), (3.18)

where

η(α) = t1−αηt +

(
ηy +

1 − α
t

ξ − ξt

)(
0Tα

t y(t)
)
− tα−1ξy

(
0Tα

t y(t)
)2
. (3.19)

�

Example 1. Consider the conformable Riccati equation

y(α)(t) + y2(t) = 0, (3.20)

where y(α)(t) denotes the conformable derivative of y. In this example, we will compute the Lie
symmetries of the above equation. Its corresponding infinitesimal generator is given by

X = ξ
∂

∂t
+ η

∂

∂y
, (3.21)
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and the α-th order prolongation of X is

X(α) = ξ
∂

∂t
+ η

∂

∂y
+ η(α) ∂

∂y(α) , (3.22)

where η(α) is given by the formula (3.7). If we put ∆ = y(α)(t) + y2(t), so the invariance criterion is given

X(α)[∆]|∆=0 = 0. (3.23)

Then,

2ηy + η(α)
∣∣∣∣∣
∆=0

= 0. (3.24)

Substituting for η(α) its expression, the above criterion leads to

t1−αηt + 2ηy −
(
ηy +

1 − α
t

ξ − ξt

)
y2 − tα−1ξyy4 = 0. (3.25)

As ξ(t, y) = ξ(t) and η(t, y) = 0, we obtain the equation

ξ
′

(t) −
1 − α

t
ξ(t) = 0. (3.26)

Hence,
ξ(t) = Ct1−α, C = cte. (3.27)

Consequently, the conformable Riccati equation (3.20) is invariant under the one-parameter group of
transformations generated by the infinitesimal operator

X = t1−α ∂

∂t
. (3.28)

4. Prolongation formula of conformable partial differential equations

Let us assume that a conformable partial differential equation of independent variables (x, t) and
dependent variable u is invariant under a one-parameter (ε) continuous point transformations

t̄ = t + εξ(t, x, y) + o(ε2), (4.1)

x̄ = x + ετ(t, x, y) + o(ε2), (4.2)

ȳ = y + εη(t, x, y) + o(ε2). (4.3)

Where
dt̄
dε

∣∣∣∣∣
ε=0

= ξ(t, x, y),
dx̄
dε

∣∣∣∣∣
ε=0

= τ(t, x, y),
dȳ
dε

∣∣∣∣∣
a=0

= η(t, x, y). (4.4)

Then, we have the following result.

Theorem 4.1. The infinitesimal transformation of the conformable derivative is given by

0Tα
t̄ ȳ = 0Tα

t y + εη(α)
t + o(ε2), (4.5)

where
η(α)

t = 0Tα
t η −

(
tα−1(0Tα

t ξ) −
1 − α

t
ξ
)
(0Tα

t y) − yx.(0Tα
t τ), (4.6)
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Proof. Equations (4.1) and (4.2) may be inverted (locally) to give t and x in terms of t̄ and x̄, provided
that the Jacobian is nonzero, that is,

J =

∣∣∣∣∣∣Dt[t̄] Dt[x̄]
Dx[t̄] Dx[x̄]

∣∣∣∣∣∣ , 0, (4.7)

where y = y(t, x) and

Dt =
∂

∂t
+ yt

∂

∂y
+ ytt

∂

∂yt
+ ytx

∂

∂yx
+ ... (4.8)

Dx =
∂

∂x
+ yx

∂

∂y
+ yxx

∂

∂yx
+ yxt

∂

∂yt
+ ..., (4.9)

denote the total derivatives that treat the dependent variable y and its derivatives according to the
independent variables. if Eq. (4.7) is satisfied, then the equation (4.3) can be rewritten as:

ȳ = ȳ(t̄, x̄). (4.10)

Applying the chain rule to (4.10), we obtain[
Dt[ȳ]
Dx[ȳ]

]
=

[
Dt[t̄] Dt[x̄]
Dx[t̄] Dx[x̄]

] [
ȳt̄

ȳx̄

]
, (4.11)

and therefore, by Cramer’s rule, we obtain

ȳt̄ =
1
J

∣∣∣∣∣∣Dt[ȳ] Dt[x̄]
Dx[ȳ] Dx[x̄]

∣∣∣∣∣∣ , ȳx̄ =
1
J

∣∣∣∣∣∣Dt[t̄] Dt[ȳ]
Dx[t̄] Dx[ȳ]

∣∣∣∣∣∣ . (4.12)

Dropping all terms with of order ε2, we get

J = 1 + ε
(
(ξt + ytξy) + (τx + yxτy)

)
+ o(ε2). (4.13)

Thus,
1
J

= 1 − ε
(
(ξt + ytξy) + (τx + yxτy)

)
+ o(ε2). (4.14)

Then,

0Tα
t̄ ȳ = t̄1−αȳt̄ (4.15)

=

(
t1−α

(
1 +

(1 − α)ε
t

ξ
)

+ o(ε2)
)(

1 − ε
(
(ξt + ytξy) + (τx + yxτy)

)
+ o(ε2)

)
×

[(
yt + ε(ηt + ytηy) + o(ε2)

)(
1 + ε(τx + yxτy) + o(ε2)

)
−

(
yx + ε(ηx + yxηy) + o(ε2)

)(
ε(τt + ytτy) + o(ε2)

)]
(4.16)

=

(
t1−α

(
1 +

(1 − α)ε
t

ξ
)

+ o(ε2)
)[

yt + ε
(
ηt + (ηy − ξt − ytξy)yt

− (τt + ytτy)yx

)
+ o(ε2)

]
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= 0Tα
t y + ε

[
t1−αηt + t1−α(ηy +

1 − α
t

ξ − ξt)yt − t1−α(τt + ytτy)yx

− t1−αξyy2
t

]
+ o(ε2). (4.17)

Hence,
0Tα

t̄ ȳ = 0Tα
t y + εη(α)

t + o(ε2), (4.18)

where
η(α)

t = 0Tα
t η −

(
tα−1(0Tα

t ξ) −
1 − α

t
ξ
)
(0Tα

t y) − yx.(0Tα
t τ), (4.19)

with
0Tα

t τ = t1−αDtτ = t1−α(τt + ytτy) and 0Tα
t η = t1−αDtη = t1−α(ηt + ytηy).

�

Example 2. We consider the time conformable heat equation defined by

y(α)
t = yxx. (4.20)

In the particular case α = 1, the above equation is invariant under the following group transformations

x̄ = x + ε, t̄ = t, ȳ = y. (4.21)
x̄ = x, t̄ = t + ε, ȳ = y. (4.22)
x̄ = x, t̄ = t, ȳ = eεy. (4.23)
x̄ = eεx, t̄ = e2εt, ȳ = y. (4.24)

x̄ = x + 2εt, t̄ = t, ȳ = ye−(εx+ε2t). (4.25)

x̄ =
x

1 − 4εt
, t̄ =

t
1 − 4εt

, ȳ = y
√

1 − 4εt exp
(
−εx2

1 − 4εt

)
. (4.26)

x̄ = x, t̄ = t, ȳ = y + εβ(x, t). (4.27)

Where β(t, x) is an arbitrary solution of the heat equation. Now, we show that transformations (4.21)
to (4.27) do not all preserve the conformable heat equation (4.20) where α , 0:
In the case of transformation (4.22), we have

ȳ(α)
t̄ = t̄1−αȳt̄ = (t + ε)1−αyt̄

= (t + ε)1−αyt =

(
1 +

ε

t

)1−α

y(α)
t =

(
1 +

ε

t

)1−α

yxx, (4.28)

and ȳx̄x̄ = yxx, consequently,
ȳ(α)

t̄ , ȳx̄x̄. (4.29)

In a similar way, we find also that transformations (4.24), (4.25) and (4.26) do not preserve the
conformable heat equation. However, the transformations (4.21) satisfies

ȳx̄x̄ =
∂

∂x̄
ȳx̄ =

∂

∂x̄
yx = yxx = y(α)

t = ȳ(α)
t̄ , (4.30)
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then, it preserves equation (4.20). Similarly, the transformations (4.23) and (4.27) will also leave the
equation (4.20) invariant.

Now, Let us assume that the conformable heat equation (4.20) is invariant under a one-parameter
(ε) continuous point transformations

t̄ = t + εξ(t, x, y) + o(ε2), (4.31)
x̄ = x + ετ(t, x, y) + o(ε2), (4.32)
ȳ = y + εη(t, x, y) + o(ε2), (4.33)

ȳ(α)
t̄ = y(α)

t + εη(α)
t + o(ε2), (4.34)

ȳx̄ = yx + εη(1)
x + o(ε2), (4.35)

ȳx̄x̄ = yxx + εη(2)
x + o(ε2). (4.36)

Where η(1)
x and η(2)

x are given by

η(1)
x = ηx + (ηy − τx)yx − ξxyt − τyy2

x − ξyyxyt, (4.37)
η(2)

x = ηxx + (2ηxy − τxx)yx − ξxxyt + (ηyy − 2τxy)y2
x − 2ξxyyxyt − τyyy3

x

− ξyyy2
xyt + (ηy − 2τx)yxx − 2ξxyxt − 3τyyxxyx − ξyyxxyt − 2ξyyxtyx. (4.38)

Suppose

X = ξ(t, x, y)
∂

∂t
+ τ(t, x, y)

∂

∂x
+ η(t, x, y)

∂

∂y
, (4.39)

be a symmetry operator for the Eq. (4.20). According to the invariance criterion, Eq. (4.20) admits the
group transformations (4.31)–(4.33) if the prolonged X(α) annihilates (4.20) on its solution, namely

X(α)(∆y)|(∆y=0) = 0, (4.40)

where ∆y = y(α)
t − yxx, and

X = X + η(1)
x

∂

∂yx
+ η(2)

x
∂

∂yxx
+ η(α)

t
∂

∂y(α)
t

. (4.41)

Then, the invariance criterion is written as

t1−αηt +

(
ηy +

1 − α
t

ξ − ξt

)
yxx − tα−1ξy(yxx)2 − t1−α(τt + tα−1yxxτy)yx − η

(2)
x = 0. (4.42)

Solving the above equation, we derive the determining system

−t1−ατt + τxx − 2ηxy = 0, (4.43)
2τxy − ηyy = 0, (4.44)

τyy = 0, (4.45)

−ξt +
1 − α

t
ξ + 2τx + tα−1ξxx = 0, (4.46)

−tα−1ξy + ξytα−1 = 0, (4.47)
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2ξxytα−1 + 2τy = 0, (4.48)
ξyytα−1 = 0, (4.49)

2ξx = 0, (4.50)
2ξy = 0, (4.51)

t1−αηt − ηxx = 0. (4.52)

Solution of the determining system, gives

ξ(t, x, y) = c6t1−α +
t
α

(
−

4c1

α
tα + c3

)
, (4.53)

τ(t, x, y) =

(
−

4c1

α
tα + c3

)
x +

(
−

2c2

α
tα + c4

)
, (4.54)

η(t, x, y) =

(
c1x2 + c2x +

(2c1

α
tα + c5

))
y + c7γ(t, x). (4.55)

where c1, ..., c6 are arbitrary constants and γ(t, x) is an arbitrary solution of the conformable heat
equation. Thus, the Lie symmetry algebra admitted by equation (4.20) is spanned by the operators

X1 =
∂

∂x
, X2 = t1−α ∂

∂t
, X3 = y

∂

∂y
, (4.56)

X4 =
2t
α

∂

∂t
+ x

∂

∂x
, X5 =

2tα

α

∂

∂x
− xy

∂

∂y
, (4.57)

X6 =
4t1+α

α2

∂

∂t
+

4xtα

α

∂

∂x
−

(
x2 +

2tα

α

)
y
∂

∂y
. (4.58)

and the infinite dimensional subalgebra

X∞ = γ(t, x)
∂

∂y
, (4.59)

where γ is an arbitrary solution of the conformable heat equation. To obtain the group transformation
generated by each infinitesimal symmetry Xk, we solve the system of first order ordinary differential
equations,

dt̄
da

= ξ(t̄, x̄, ȳ),
dx̄
da

= τ(t̄, x̄, ȳ),
dȳ
da

= η(t̄, x̄, ȳ),

subject to the initial conditions

t̄(ε = 0) = t, x̄(ε = 0) = x, ȳ(ε = 0) = y.

The one-parameter groups Gi generated by Xi are given as follows

G1 :(t, x, y)→
(
t, x + ε, y

)
, (4.60)

G2 :(t, x, y)→
(
(tα + εα)1/α, x, y

)
, (4.61)

G3 :(t, x, y)→
(
t, x, eεy

)
, (4.62)
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G4 :(t, x, y)→
(
e2ε/αt, eεx, y

)
, (4.63)

G5 :(t, x, y)→
(
t, x + 2ε(tα/α), ye−

(
εx+ε2(tα/α)

))
, (4.64)

G6 :(t, x, y)→
(( tα

1 − 4ε(tα/α)

)1/α

,
x

1 − 4ε(tα/α)
, y

√
1 − 4ε(tα/α) exp

(
−εx2

1 − 4ε(tα/α)

))
, (4.65)

G∞ :(t, x, y)→
(
t, x, y + εγ(t, x)

)
. (4.66)

Consequently, since Gi is a symmetry, if y = f (t, x) is a solution of the conformable heat equation, so
are

y1 = f (t, x − ε), (4.67)
y2 = f ((tα − εα)1/α, x), (4.68)
y3 = eε f (t, x), (4.69)
y4 = f (e−2ε/αt, e−εx), (4.70)

y5 = f
(
t, x − 2ε(tα/α)

)
e−

(
εx−ε2(tα/α)

)
, (4.71)

y6 =

f
(( tα

1 + 4ε(tα/α)

)1/α

,
x

1 + 4ε(tα/α)

)
√

1 + 4ε(tα/α)
exp

(
−εx2

1 + 4ε(tα/α)

)
, (4.72)

y∞ = f (t, x) + εγ(t, x). (4.73)

If we let y = 1 be a constant solution of the conformable heat equation, we conclude that the function

G6(ε).1 =
1

√
1 + 4ε(tα/α)

exp
(

−εx2

1 + 4ε(tα/α)

)
, (4.74)

is also solution. Furthermore, we can derive other exact solutions of conformable heat equation if we
continue this iteration process.

5. Conclusion and comments

In this work, we have shown that the Lie symmetry analysis could be extended to conformable
differential equations as it has been done for fractional differential equations based on the
Riemann-Liouville or the Caputo approaches. This extension might be more investigated to employ
various developed properties of invariance to derive exact solutions of other linear and nonlinear
conformable differential equations. In addition, this work will bring new opportunities in studying
some non autonomous system of partial differential equations with p-dependent variables and
q-independent variables. Finally, it will be important to develop the Lie symmetry analysis for
differential equations involving different fractional derivatives such as Caputo-Fabrizio derivative and
Atangana-Baleanu derivative.
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