Citation: Aziz Belmiloudi. Time-varying delays in electrophysiological wave propagation along cardiac tissue and minimax control problems associated with uncertain bidomain type models[J]. AIMS Mathematics, 2019, 4(3): 928-983. doi: 10.3934/math.2019.3.928
[1] | R. A. Adams, Sobolev spaces, Academic Press, New-York, 1975. |
[2] | B. Ainseba, M. Bendahmane, R. Ruiz-Baier, Analysis of an optimal control problem for the tridomain model in cardiac electrophysiology, J. Math. Anal. Appl., 388 (2012), 231-247. doi: 10.1016/j.jmaa.2011.11.069 |
[3] | T. Ashihara, J. Constantino, N. A. Trayanova, Tunnel propagation of postshock activations as a hypothesis for fibrillation induction and isoelectric window, Circ. Res., 102 (2008), 737-745. doi: 10.1161/CIRCRESAHA.107.168112 |
[4] | O. V. Aslanidi, A. P. Benson, M. R. Boyett, et al. Mechanisms of defibrillation by standing waves in the bidomain ventricular tissue with voltage applied in an external bath, Physica D: Nonlinear Phenomena, 238 (2009), 984-991. doi: 10.1016/j.physd.2009.02.003 |
[5] | G. W. Beeler, H. Reuter, Reconstruction of the action potential of ventricular myocardial fibres, J. Physiol., 268 (1977), 177-210. doi: 10.1113/jphysiol.1977.sp011853 |
[6] | A. Belmiloudi, S. Corre, Mathematical modeling and analysis of dynamic effects of multiple time-varying delays on electrophysiological wave propagation in the heart, Nonlinear Analysis Series B: Real World Applications, 47 (2019), 18-44. doi: 10.1016/j.nonrwa.2018.09.025 |
[7] | A. Belmiloudi, Mathematical modeling and optimal control problems in brain tumor targeted drug delivery strategies, Int. J. Biomath., 10 (2017), 1750056. |
[8] | A. Belmiloudi, Dynamical behavior of nonlinear impulsive abstract partial differential equations on networks with multiple time-varying delays and mixed boundary conditions involving time-varying delays, J. Dyn. Control Syst., 21 (2015), 95-146. doi: 10.1007/s10883-014-9230-y |
[9] | A. Belmiloudi, Robust control problem of uncertain bidomain models in cardiac electrophysiology, Journal of Coupled Systems and Multiscale Dynamics, 1 (2013), 332-350. doi: 10.1166/jcsmd.2013.1023 |
[10] | A. Belmiloudi, Stabilization, optimal and robust control. Theory and applications in biological and physical sciences, Springer-Verlag, London, 2008. |
[11] | A. Belmiloudi, Bilinear minimax control problems for a class of parabolic systems with applications to control of nuclear reactors, J. Math. Anal. Appl., 327 (2007), 620-642. doi: 10.1016/j.jmaa.2006.04.037 |
[12] | A. Belmiloudi, Minimax control problem of periodic competing parabolic systems with logistic growth terms, Int. J. Control, 79 (2006), 150-161. doi: 10.1080/00207170500483484 |
[13] | A. Belmiloudi, Nonlinear optimal control problems of degenerate parabolic equations with logistic time varying delays of convolution type, Nonlinear Anal-Theor, 63 (2005), 1126-1152. doi: 10.1016/j.na.2005.05.033 |
[14] | A. Belmiloudi, Robust control problems associated with time-varying delay nonlinear parabolic equations, IMA J. Math. Control I., 20 (2003), 305-334. doi: 10.1093/imamci/20.3.305 |
[15] | M. Bendahmane, K. H. Karlsen, Analysis of a class of degenerate reaction-diffusion systems and the bidomain model of cardiac tissue, Netw. Heterog. Media, 1 (2006), 185-218. doi: 10.3934/nhm.2006.1.185 |
[16] | G. A. Bocharov, F. A. Rihan, Numerical modelling in biosciences using delay differential equations, J. Comput. Appl. Math., 125 (2000), 183-199. doi: 10.1016/S0377-0427(00)00468-4 |
[17] | M. Boulakia, S. Cazeau, M. A. Fernández, et al. Mathematical Modeling of Electrocardiograms: A Numerical Study, Ann. Biomed. Eng., 38 (2009), 1071-1097. |
[18] | Y. Bourgault, Y. Coudiere, C. Pierre, Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology, Nonlinear Analysis: Real World Applications, 10 (2009), 458-482. doi: 10.1016/j.nonrwa.2007.10.007 |
[19] | A. J. V. Brandao, E. Fernandez-Cara, P. M. D. Magalhaes, et al. Theoretical analysis and control results for the FitzHugh-Nagumo equation, Electron. J. Differ. Eq., 164 (2008), 1-20. |
[20] | N. Buric, D. Todorovic, Dynamics of FitzHugh-Nagumo excitable systems with delayed coupling, Phys. Rev. E, 67 (2003), 066222. |
[21] | N. Buric, K. Todorovic, N. Vasovic, Dynamics of noisy FitzHugh-Nagumo neurons with delayed coupling, Chaos, Solitons and Fractals, 40 (2009), 2405-2413. doi: 10.1016/j.chaos.2007.10.036 |
[22] | S. A. Campbell, Time delays in neural systems, In: V.K. Jirsa, A.R. McIntosh, (Eds.), Handbookof Brain Connectivity, Understanding Complex Systems, Springer, 65-90, 2007. |
[23] | S. R Campbell, D. Wang, Relaxation oscillators with time delay coupling, Physica D, 111 (1998), 151-178. doi: 10.1016/S0167-2789(97)80010-3 |
[24] | J. O. Campos, R. S. Oliveira, R. W. dos Santos, et al. Lattice Boltzmann method for parallel simulations of cardiac electrophysiology using GPUs, J. Comput. Appl. Math., 295 (2016), 70-82. doi: 10.1016/j.cam.2015.02.008 |
[25] | R. H. Clayton, O. Bernus, E. M. Cherry, et al. Models of cardiac tissue electrophysiology: Progress, challenges and open questions, Prog. Biophys. Mol. Bio., 104 (2010), 22-48. |
[26] | P. Colli-Franzone, L. Guerri, B. Taccardi, Modeling ventricular excitation: Axial and orthotropic anisotropy effects on wavefronts and potentials, Math. Biosci., 188 (2004), 191-205. doi: 10.1016/j.mbs.2003.09.005 |
[27] | P. Colli Franzone, G. Savaré, Degenerate evolution systems modeling the cardiac electric field at micro- and macroscopic level. In: Evolution Equations, Semigroups and Functional Analysis (eds.A. Lorenzi, B. Ruf), Birkhauser, Basel, 49-78, 2002. |
[28] | P. Colli Franzone, L. Guerri, M. Pennacchio, et al. Spread of excitation in 3-D models of the anisotropic cardiac tissue. II: Effects of fiber architecture and ventricular geometry, Math. Biosci., 147 (1998), 131-171. doi: 10.1016/S0025-5564(97)00093-X |
[29] | P. Colli Franzone, L. Guerri, S. Tentoni, Mathematical modeling of the excitation process in myocardial tissue: Influence of fiber rotation on wavefront propagation and potential field, Math. Biosci., 101 (1990), 155-235. doi: 10.1016/0025-5564(90)90020-Y |
[30] | S. Corre, A. Belmiloudi, Coupled lattice Boltzmann simulation method for bidomaintype models in cardiac electrophysiology with multiple time-delays, Mathematical Modelling of Natural Phenomena (Topical Issues : Mathematical Modelling in Cardiology), In press. |
[31] | S. Corre, A. Belmiloudi, Coupled lattice Boltzmann method for numerical simulations of fully coupled Heart and Torso bidomain system in electrocardiology, Journal of Coupled System and Multiscale Dynamics, 4 (2016), 207-229. doi: 10.1166/jcsmd.2016.1109 |
[32] | S. Corre, A. Belmiloudi, Coupled Lattice Boltzmann Modeling of Bidomain Type Models in Cardiac Electrophysiology, Mathematical and Computational Approaches in Advancing Modern Science and Engineering (eds. J. Bélair, et al.), Springer, 209-221, 2016. |
[33] | H. Dal, S. Goktepe, M. Kaliske, et al. A fully implicit finite element method for bidomain models of cardiac electromechanics, Comput. Method. Appl. M., 253 (2013), 323-336. doi: 10.1016/j.cma.2012.07.004 |
[34] | M. Dupraz, S. Filippi, A. Gizzi, et al. Finite element and finite volume-element simulation of pseudo-ECGs and cardiac alternans, Math. Method. Appl. Sci., 38 (2015), 1046-1058. doi: 10.1002/mma.3127 |
[35] | I. Ekeland, R. Temam, Convex analysis and variational problems, North-Holland,Amsterdam, 1976. |
[36] | F. Fenton, A. Karma, Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation, Chaos, 8 (1998), 20-47. doi: 10.1063/1.166311 |
[37] | R. Fitzhugh, Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1 (1961), 445-465. doi: 10.1016/S0006-3495(61)86902-6 |
[38] | L. Glass, Synchronization and rhythmic processes in physiology, Nature, 410 (2001), 277-284. doi: 10.1038/35065745 |
[39] | A. Griewank, Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation, Optim. Method. Softw., 1 (1992), 35-54. doi: 10.1080/10556789208805505 |
[40] | C. Henriquez, Simulating the electrical behavior of cardiac tissue using the bidomain model, Critical Reviews in Biomedical Engineering, 21 (1993), 1-77. |
[41] | D. A. Hooks, K. A. Tomlinson, S. G. Marsden, et al. Cardiac microstructure: Implications for electrical propagation and defibrillation in the heart, Circ. Res., 91 (2002), 331-338. doi: 10.1161/01.RES.0000031957.70034.89 |
[42] | D. A. Israel, D. J. Edell, R. G. Mark, Time delays in propagation of cardiac action potential, Am. J. Physiol., 258 (1990), H1906-17. |
[43] | J. Jia, H. Liu, C. Xu, et al. Dynamic effects of time delay on a coupled FitzHugh-Nagumo neural system, Alexandria Engineering Journal, 54 (2015), 241-250. doi: 10.1016/j.aej.2015.03.006 |
[44] | J. Keener, J. Sneyd, Mathematical Physiology, Springer-Verlag, New York, 2009. |
[45] | K. Kunisch, M. Wagner, Optimal control of the bidomain system (III): Existence of minimizers and first-order optimality conditions, ESAIM: Mathematical Modelling and Numerical Analysis, 47 (2013), 1077-1106. |
[46] | G. Lines, M. Buist, P. Grottum, et al. Mathematical models and numerical methods for the forward problem in cardiac electrophysiology, Computing and Visualization in Science, 5 (2003), 215-239. |
[47] | J. L. Lions, Equations Differentielles Operationnelles, Springer, NewYork, 1961. |
[48] | J. L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, Tome 1&2, Dunod, Paris, 1968. |
[49] | C. H. Luo, Y. Rudy, A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction, Circ. Res., 68 (1991), 1501-1526. doi: 10.1161/01.RES.68.6.1501 |
[50] | C. H. Luo, Y. Rudy, A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes, Circ. Res., 74 (1994), 1071-1096. doi: 10.1161/01.RES.74.6.1071 |
[51] | J. Roger, A. McCulloch, A collocation-Galerkin finite element model of cardiac action potential propagation, IEEE T. Biomed. Eng., 41 (1994), 743-757. doi: 10.1109/10.310090 |
[52] | C. C. Mitchell, D. G. Schaeffer, A two-current model for the dynamics of cardiac membrane, B. Math. Biol., 65 (2003), 767-793. doi: 10.1016/S0092-8240(03)00041-7 |
[53] | C. Nagaiah, K. Kunisch, G. Plank, Numerical solution for optimal control of the reaction-diffusion equations in cardiac electrophysiology, Comput. Optim. Appl., 49 (2011), 149-178. doi: 10.1007/s10589-009-9280-3 |
[54] | A. Panfilov, R. Aliev, A simple two-variable model of cardiac excitation, Chaos Solitons and Fractals, 7 (1996), 293-301. doi: 10.1016/0960-0779(95)00089-5 |
[55] | M. Penet, H. Guéguen, A. Belmiloudi, Artificial blood glucose control using a DDE modelling approach, IFAC Proceedings Volumes, 47 (2014), 2076-2081. doi: 10.3182/20140824-6-ZA-1003.01233 |
[56] | A. J. Pullan, M. L. Buist, L. K. Cheng, Mathematically modelling the electrical activity of the heart-from cell to body surface and back again, World Scientific, Singapore, 2005. |
[57] | A. Quarteroni, R. Sacco, F. Saleri, Numerical Mathematics, Vol. 37 of Texts in Applied Mathematics (2nd ed.), Springer-Verlag, Berlin, 2007. |
[58] | B. Roth, Meandering of spiral waves in anisotropic cardiac tissue, Physica D: Nonlinear Phenomena, 150 (2001), 127-136. doi: 10.1016/S0167-2789(01)00145-2 |
[59] | S. Rolewicz, Funktionalanalysis und Steuerungstheorie, Springer, Berlin, New York, 1976. |
[60] | R. F. Sandra, M. A. Savi, An analysis of heart rhythm dynamics using a three-coupled oscillator model, Chaos, Solitons and Fractals, 41 (2009), 2553-2565. doi: 10.1016/j.chaos.2008.09.040 |
[61] | E. Scholl, G. Hiller, P. Hovel, et al. Time-delayed feedback in neurosystems, Philos. T. R. Soc. A, 367 (2009), 1079-1096. doi: 10.1098/rsta.2008.0258 |
[62] | T. Seidman, H. Z. Zhou, Existence and uniqueness of optimal controls for a quasilinear parabolic equation, SIAM J. Control Optim., 20 (1982), 747-762. doi: 10.1137/0320054 |
[63] | O. Sharomi, R. Spiteri, Convergence order vs. parallelism in the numerical simulation of the bidomain equations, Journal of Physics: Conference Series, 385 (2012), 012009. |
[64] | H. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Springer Science&Business Media, 2010. |
[65] | J. Sundnes, G. Lines, X. Cai, et al. Computing the electrical activity in the heart, Springer, Berlin, 2006. |
[66] | R. Temam, Navier-Stokes equations, North-Holland, Amsterdam, 1984. |
[67] | L. Tung, A bi-domain model for describibg ischemic myocardial d-c potentials [Thesis/Dissertation], Massachussets Institute of Technology, 1978. |
[68] | K. H. Ten Tusscher, A. V. Panfilov, Alternans and spiral breakup in a human ventricular tissue model, Am. J. Physiol-Heart C., 291 (2006), H1088-H1100. |
[69] | M. Veneroni, Reaction-diffusion systems for the macroscopic bidomain model of the cardiac electric field, Nonlinear Anal-Real, 10 (2009), 849-868. doi: 10.1016/j.nonrwa.2007.11.008 |
[70] | E. J. Vigmond, M. Hughes, G. Plank, Computational tools for modeling electrical activity in cardiac tissue, J. Electrocardiol., 36 (2003), 69-74. doi: 10.1016/j.jelectrocard.2003.09.017 |
[71] | E. J. Vigmond, R. W. dos Santos, A. J. Prassl, et al. Solvers for the cardiac bidomain equations, Prog. Biophys. Mol. Bio., 96 (2008), 3-18. doi: 10.1016/j.pbiomolbio.2007.07.012 |
[72] | D. Wu, S. Zhu, Stochastic resonance in FitzHugh-Nagumo system with time-delayed feedback, Phys. Lett. A, 372 (2008), 5299-5304. doi: 10.1016/j.physleta.2008.06.015 |