Research article

On (complete) normality of m-pF subalgebras in BCK/BCI-algebras

  • Received: 19 March 2019 Accepted: 05 June 2019 Published: 26 June 2019
  • MSC : 03G25, 06F35, 08A72

  • In this paper, we introduce the concepts of normal $m$-polar fuzzy subalgebras, maximal $m$-polar fuzzy subalgebras and completely normal $m$-polar fuzzy subalgebras in $BCK/BCI$-algebras. We discuss some properties of normal (resp., maximal, completely normal) $m$-polar fuzzy subalgebras. We prove that any non-constant normal $m$-polar fuzzy subalgebra which is a maximal element of $(\mathcal{NO}(X), \subseteq)$ takes only the values $\widehat{0} = (0, 0, ..., 0)$ and $\widehat{1} = (1, 1, ..., 1), $ and every maximal $m$-polar fuzzy subalgebra is completely normal. Moreover, we state an $m$-polar fuzzy characteristic subalgebra in $BCK/BCI$-algebras.

    Citation: Anas Al-Masarwah, Abd Ghafur Ahmad. On (complete) normality of m-pF subalgebras in BCK/BCI-algebras[J]. AIMS Mathematics, 2019, 4(3): 740-750. doi: 10.3934/math.2019.3.740

    Related Papers:

  • In this paper, we introduce the concepts of normal $m$-polar fuzzy subalgebras, maximal $m$-polar fuzzy subalgebras and completely normal $m$-polar fuzzy subalgebras in $BCK/BCI$-algebras. We discuss some properties of normal (resp., maximal, completely normal) $m$-polar fuzzy subalgebras. We prove that any non-constant normal $m$-polar fuzzy subalgebra which is a maximal element of $(\mathcal{NO}(X), \subseteq)$ takes only the values $\widehat{0} = (0, 0, ..., 0)$ and $\widehat{1} = (1, 1, ..., 1), $ and every maximal $m$-polar fuzzy subalgebra is completely normal. Moreover, we state an $m$-polar fuzzy characteristic subalgebra in $BCK/BCI$-algebras.


    加载中


    [1] M. Akram, M. Adeel, m-polar fuzzy labeling graphs with application, Mathematics in Computer Science, 10 (2016), 387-402. doi: 10.1007/s11786-016-0277-x
    [2] M. Akram, A. Farooq, $m$-polar fuzzy lie ideals of lie algebras, Quasigroups Related Systems, 24 (2016), 141-150.
    [3] M. Akram, A. Farooq, K. P. Shum, On $m$-polar fuzzy lie subalgebras, Ital. J. Pure Appl. Math., 36 (2016), 445-454.
    [4] M. Akram, M. Sarwar, Novel applications of $m$-polar fuzzy hypergraphs, J. Intell. Fuzzy Syst., 32 (2017), 2747-2762. doi: 10.3233/JIFS-16859
    [5] M. Akram, G. Shahzadi, Hypergraphs in $m$-polar fuzzy environment, Mathematics, 6 (2018), 28.
    [6] A. Al-Masarwah, A. G. Ahmad, Doubt bipolar fuzzy subalgebras and ideals in BCK/BCI-algebras, J. Math. Anal., 9 (2018), 9-27.
    [7] A. Al-Masarwah, A. G. Ahmad, Novel concepts of doubt bipolar fuzzy H-ideals of BCK/BCI-algebras, Int. J. Innov. Comput. Inf. Control, 14 (2018), 2025-2041.
    [8] A. Al-Masarwah, A. G. Ahmad, On some properties of doubt bipolar fuzzy H-ideals in BCK/BCI-algebras, Eur. J. Pure Appl. Math., 11 (2018), 652-670. doi: 10.29020/nybg.ejpam.v11i3.3288
    [9] A. Al-Masarwah, A. G. Ahmad, $m$-Polar fuzzy ideals of BCK/BCI-algebras, Journal of King Saud University - Science, 2018.
    [10] A. Al-Masarwah, A. G. Ahmad, $m$-Polar (α, β)-fuzzy ideals in BCK/BCI-algebras, Symmetry, 11 (2019), 44.
    [11] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87-96. doi: 10.1016/S0165-0114(86)80034-3
    [12] J. Chen, S. Li, S. Ma, et al. $m$-polar fuzzy sets: An extension of bipolar fuzzy sets, The Scientific World Journal, 2014 (2014), 416530.
    [13] A. Farooq, G. Ali, M. Akram, On $m$-polar fuzzy groups, Int. J. Algebr. Stat., 5 (2016), 115-127. doi: 10.20454/ijas.2016.1177
    [14] Y. Imai, K. Iséki, On axiom systems of propositional calculi, XIV, P. Jpn. Acad. A-Math, 42 (1966), 19-22. doi: 10.3792/pja/1195522169
    [15] K. Iséki, K. An algebra related with a propositional calculus, P. Jpn. Acad. A-Math, 42 (1966), 26-29.
    [16] K. J. Lee, Bipolar fuzzy subalgerbas and bipolar fuzzy ideals of $BCK/BCI$-algerbas, Bull. Malays. Math. Sci. Soc., 32 (2009), 361-373.
    [17] M. Sarwar, M. Akram, New applications of $m$-polar fuzzy matroids, Symmetry, 9 (2017), 319.
    [18] T. Senapati, M. Bhowmik, M. Pal, Fuzzy dot subalgebras and fuzzy dot ideals of B-algebras, Journal of Uncertain Systems, 8 (2014), 22-30.
    [19] T. Senapati, M. Bhowmik, M. Pal, Fuzzy dot structure of BG-algebras, Fuzzy Information and Engineering, 6 (2014), 315-329. doi: 10.1016/j.fiae.2014.12.004
    [20] T. Senapati, M. Bhowmik, M. Pal, Interval-valued intuitionistic fuzzy closed ideals BG-algebras and their products, International Journal of Fuzzy Logic Systems, 2 (2012), 27-44. doi: 10.5121/ijfls.2012.2203
    [21] T. Senapati, C. Jana, M. Bhowmik, et al. L-fuzzy G-subalgebras of G-algebras, Journal of the Egyptian Mathematical Society, 23 (2015), 219-223. doi: 10.1016/j.joems.2014.05.010
    [22] T. Senapati, C. Jana, M. pal, et al. Cubic Intuitionistic q-ideals of BCI-algebras, Symmetry, 10 (2018), 752.
    [23] T. Senapati, Y. B. Jun, G. Muhiuddin, et al. Cubic intuitionistic structures applied to ideals of BCI-algebras, Analele Stiintifice ale Universitatii Ovidius Constanta, 27 (2019), 213-232.
    [24] T. Senapati, C. S. Kim, M. Bhowmik, et al. Cubic subalgebras and cubic closed ideals of B-algebras, Fuzzy Information and Engineering, 7 (2015), 129-149. doi: 10.1016/j.fiae.2015.05.001
    [25] T. Senapati, K. P. Shum, Cubic commutative ideals of BCK-algebras, Missouri Journal of Mathematical Sciences, 30 (2018), 5-19.
    [26] T. Senapati, K. P. Shum, Cubic implicative ideals of BCK-algebras, Missouri Journal of Mathematical Sciences, 29 (2017), 125-138.
    [27] O. G. Xi, Fuzzy BCK-algebras, Math. Jpn., 36 (1991), 935-942.
    [28] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338-353. doi: 10.1016/S0019-9958(65)90241-X
    [29] W. R. Zhang, Bipolar fuzzy sets and relations: A computational framework for cognitive and modeling and multiagent decision analysis, In: NAFIPS/IFIS/NASA'94. Proceedings of the First International Joint Conference of The North American Fuzzy Information Processing Society Biannual Conference. The Industrial Fuzzy Control and Intellige, pp. 305-309, 1994.
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4338) PDF downloads(1194) Cited by(9)

Article outline

Figures and Tables

Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog