Research article

Existence of multiple non-trivial solutions for a nonlocal problem

  • Received: 08 January 2019 Accepted: 12 March 2019 Published: 25 March 2019
  • In this paper, we are concerned with the following general nonlocal problem $ \begin{equation*} \begin{cases} -\mathcal{L}_K u = \lambda_1u+f(x, u)& \text{in}\ \Omega, \\ u = 0& \text{in}\ \mathbb{R}^N\backslash\Omega, \end{cases} \end{equation*} $ where $\lambda_1$ denotes the first eigenvalue of the nonlocal integro-differential operator $-\mathcal{L}_K$, $\Omega\subset\mathbb{R}^N$ is open, bounded domain with smooth boundary. Under several structural assumptions on $f$, we verify that the problem possesses at least two non-trivial solutions and locate the region in different parts of the Hilbert space by variational method. As a particular case, we derive an existence theorem for the following equation driven by the fractional Laplacian $ \begin{equation*} \begin{cases} (-\Delta)^su = \lambda_1u+f(x, u)& \text{in}\ \Omega, \\ u = 0& \text{in}\ \mathbb{R}^N\backslash\Omega. \end{cases} \end{equation*} $

    Citation: Xianyong Yang, Zhipeng Yang. Existence of multiple non-trivial solutions for a nonlocal problem[J]. AIMS Mathematics, 2019, 4(2): 299-307. doi: 10.3934/math.2018.2.299

    Related Papers:

  • In this paper, we are concerned with the following general nonlocal problem $ \begin{equation*} \begin{cases} -\mathcal{L}_K u = \lambda_1u+f(x, u)& \text{in}\ \Omega, \\ u = 0& \text{in}\ \mathbb{R}^N\backslash\Omega, \end{cases} \end{equation*} $ where $\lambda_1$ denotes the first eigenvalue of the nonlocal integro-differential operator $-\mathcal{L}_K$, $\Omega\subset\mathbb{R}^N$ is open, bounded domain with smooth boundary. Under several structural assumptions on $f$, we verify that the problem possesses at least two non-trivial solutions and locate the region in different parts of the Hilbert space by variational method. As a particular case, we derive an existence theorem for the following equation driven by the fractional Laplacian $ \begin{equation*} \begin{cases} (-\Delta)^su = \lambda_1u+f(x, u)& \text{in}\ \Omega, \\ u = 0& \text{in}\ \mathbb{R}^N\backslash\Omega. \end{cases} \end{equation*} $


    加载中


    [1] R. Servadei and E. Valdinoci, Mountain pass solutions for nonlocal elliptic operators, J. Math. Anal. Appl., 389 (2012), 887-898. doi: 10.1016/j.jmaa.2011.12.032
    [2] L. Caffarelli, S. Salsa and L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math., 171 (2008), 425-461. doi: 10.1007/s00222-007-0086-6
    [3] L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Commun. Pur. Appl. Math., 60 (2007), 67-112. doi: 10.1002/cpa.20153
    [4] L. Caffarelli, J. Roquejoffre and O. Savin, Nonlocal minimal surfaces, Commun. Pur. Appl. Math., 63 (2010), 1111-1144.
    [5] L. Caffarelli and E. Valdinoci, Uniform estimates and limiting arguments for nonlocal minimal surfaces, Calc. Var. Partial Dif., 41 (2011), 203-240. doi: 10.1007/s00526-010-0359-6
    [6] Y. Sire and E. Valdinoci, Fractional Laplacian phase transitions and boundary reactions: A geometric inequality and a symmetry result, J. Funct. Anal., 256 (2009), 1842-1864. doi: 10.1016/j.jfa.2009.01.020
    [7] C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications, In book series: Lecture Notes of the Unione Matematica Italiana, volume 20, Springer, Heidelberg, 2016.
    [8] S. Serfaty and J. Vázquez, A mean field equation as limit of nonlinear diffusions with fractional Laplacian operators, Calc. Var. Partial Dif., 49 (2014), 1091-1120. doi: 10.1007/s00526-013-0613-9
    [9] J. Vázquez, Nonlinear diffusion with fractional Laplacian operators, In: Nonlinear Partial Differential Equations. The Abel symposium 2010, Springer, Heidelberg, 2012.
    [10] R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman & Hall/CRC Financial Mathematics Series, Boca Raton, FL: Chapman & Hall/CRC, 2004.
    [11] E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004
    [12] G. Bisci, V. Radulescu and R. Servadei, Variational methods for nonlocal fractional problems, Cambridge University Press, 2016.
    [13] R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339 (2000), 1-77. doi: 10.1016/S0370-1573(00)00070-3
    [14] L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Thesis (Ph.D.), The University of Texas at Austin, 2005.
    [15] S. Dipierro, M. Medina and E. Valdinoci, Fractional elliptic problems with critical growth in the whole of $\mathbb{R^N$, Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)], 15, Pisa: Edizioni della Normale, 2017.
    [16] B. Barrios, E. Colorado, A. de Pablo, et al. On some critical problems for the fractional Laplacian operator, J. Differ. Equations, 252 (2012), 6133-6162. doi: 10.1016/j.jde.2012.02.023
    [17] G. Bisci and B. Pansera, Three weak solutions for nonlocal fractional equations, Adv. Nonlinear Stud., 14 (2014), 591-601.
    [18] L. Caffarelli, J. Roquejoffre and Y. Sire, Variational problems for free boundaries for the fractional Laplacian, J. Eur. Math. Soc., 12 (2010), 6133-6162.
    [19] X. Chang and Z. Wang, Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity, Nonlinearity, 26 (2013), 479-494. doi: 10.1088/0951-7715/26/2/479
    [20] K. Teng, Multiple solutions for a class of fractional Schrödinger equations in $R^N$, Nonlinear Anal.: Real World Appl., 21 (2015), 76-86.
    [21] Z. Yang and F. Zhao, Three solutions for a fractional Schrödinger equation with vanishing potentials, Appl. Math. Lett., 76 (2018), 90-95. doi: 10.1016/j.aml.2017.08.004
    [22] B. Zhang, G. Bisci and R. Servadei, Superlinear nonlocal fractional problems with infinitely many solutions, Nonlinearity, 28 (2015), 2247-2264. doi: 10.1088/0951-7715/28/7/2247
    [23] R. Servadei and E. Valdinoci, Variational methods for nonlocal operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137.
    [24] R. Servadei and E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc., 367 (2015), 67-102.
    [25] G. Gu, W. Zhang and F. Zhao, Infinitely many sign-changing solutions for a nonlocal problem, Ann. Mat. Pur. Appl., 197 (2018), 1429-1444. doi: 10.1007/s10231-018-0731-2
    [26] G. Gu, W. Zhang and F. Zhao, Infinitely many positive solutions for a nonlocal problem, Appl. Math. Lett., 84 (2018), 49-55. doi: 10.1016/j.aml.2018.04.010
    [27] G. Gu, Y. Yu and F. Zhao, The least energy sign-changing solution for a nonlocal problem, J. Math. Phys., 58 (2017), Article ID 051505: 1-11.
    [28] M. Schechter, Multiple solutions for semilinear elliptic problems, Mathematika, 47 (2000), 307-317. doi: 10.1112/S0025579300015916
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3955) PDF downloads(613) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog