Review Topical Sections

A comparative review of Mg/CNTs and Al/CNTs composite to explore the prospect of bimetallic Mg-Al/CNTs composites

  • Received: 05 February 2020 Accepted: 18 May 2020 Published: 25 May 2020
  • Lightweight materials characterized by low density, high strength to weight ratio, low porosity, high corrosion resistance with improved mechanical, thermal, electrical properties are now extensively used in many engineering applications ranging from the deep sea to aerospace. Besides, the materials must be multifunctional comprises a fast and economic manufacturing technique. Metallic matrix CNTs composites such as Mg/CNTs and Al/CNTs have such the aforementioned quality. However, Mg/CNTs and Al/CNTs has some specific advantages and disadvantages that restrict their applicability. To harvest the dual benefit of Mg/CNTs and Al/CNTs, bimetallic matrix Mg-Al/CNTs may be prospected. Mg-Al bimetallic combination for alloying has substantial mechanical properties with heavy amalgamation. Therefore, interdisciplinary research on reinforcement, compacting, bonding, dispersion of CNTs in the bimetallic matrix, microstructure and defect analysis will open the door for producing new class of composite materials. In this work, various Mg/CNTs, Al/CNTs, Mg-Al composites have been studied to find the prospect of Mg-Al/CNTs composites. The worthwhile accomplishment of the reviews will provide the knowledge of fabrication for CNTs reinforced bimetallic Mg-Al based lightweight composites and understand its mechanical behaviors.

    Citation: Md. Hasan Ali, Robiul Islam Rubel. A comparative review of Mg/CNTs and Al/CNTs composite to explore the prospect of bimetallic Mg-Al/CNTs composites[J]. AIMS Materials Science, 2020, 7(3): 217-243. doi: 10.3934/matersci.2020.3.217

    Related Papers:

  • Lightweight materials characterized by low density, high strength to weight ratio, low porosity, high corrosion resistance with improved mechanical, thermal, electrical properties are now extensively used in many engineering applications ranging from the deep sea to aerospace. Besides, the materials must be multifunctional comprises a fast and economic manufacturing technique. Metallic matrix CNTs composites such as Mg/CNTs and Al/CNTs have such the aforementioned quality. However, Mg/CNTs and Al/CNTs has some specific advantages and disadvantages that restrict their applicability. To harvest the dual benefit of Mg/CNTs and Al/CNTs, bimetallic matrix Mg-Al/CNTs may be prospected. Mg-Al bimetallic combination for alloying has substantial mechanical properties with heavy amalgamation. Therefore, interdisciplinary research on reinforcement, compacting, bonding, dispersion of CNTs in the bimetallic matrix, microstructure and defect analysis will open the door for producing new class of composite materials. In this work, various Mg/CNTs, Al/CNTs, Mg-Al composites have been studied to find the prospect of Mg-Al/CNTs composites. The worthwhile accomplishment of the reviews will provide the knowledge of fabrication for CNTs reinforced bimetallic Mg-Al based lightweight composites and understand its mechanical behaviors.


    加载中


    [1] Chen B, Kondoh K, Li JS, et al. (2020) Extraordinary reinforcing effect of carbon nanotubes in aluminium matrix composites assisted by in-situ alumina nanoparticles. Compos Part B-Eng 183: 107691. doi: 10.1016/j.compositesb.2019.107691
    [2] Shiju J, Al-Sagheer F, Bumajdad A, et al. (2018) In-situ preparation of aramid-multiwalled CNT nano-composites: morphology, thermal mechanical and electric properties. Nanomaterials 8: 309. doi: 10.3390/nano8050309
    [3] Zhao D, Zhou Z (2014) Applications of lightweight composites in automotive industries. In: Yang Y, Xu H, Yu X, Lightweight Materials from Biopolymers and Biofibers, Washington: ACS Symposium Series: American Chemical Society, 143-158.
    [4] Gorbatikh L, Wardle BL, Lomov SV (2016) Hierarchical lightweight composite materials for structural application. MRS Bull 41: 672-677. doi: 10.1557/mrs.2016.170
    [5] Aerospace Technology Institute (2018) Composite material applications in aerospace. INSIGHT-09-composites materials. Available from: https://www.ati.org.uk/media/lw4f212o/insight_9-composites_amended-2018-09-20.pdf.
    [6] Goni J, Egizabal P, Coleto J, et al. (2003) High performance automotive and railway components made from novel competitive aluminium composites. Mater Sci Technol 19: 931-934. doi: 10.1179/026708303225004413
    [7] Liu B, Zheng Y (2010) Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron. Acta Biomater 7: 1407-1420.
    [8] Hao H, Ye S, Yu K, et al. (2016) The role of alloying elements on the sintering of Cu. J Alloy Compd 684: 91-97. doi: 10.1016/j.jallcom.2016.05.143
    [9] Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354: 56-58. doi: 10.1038/354056a0
    [10] Pitroda J, Jethwa B, Dave SK (2016) A critical review on carbon nanotubes. IJCRCE 2: 36-42.
    [11] AZoNano (2018) Applications of carbon nanotubes. Available from: https://www.azonano.com/article.aspx?ArticleID=4842.
    [12] Eatemadi A, Daraee H, Karimkhanloo H, et al. (2014) Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res Lett 9: 393. doi: 10.1186/1556-276X-9-393
    [13] Manna K, Srivastava SK (2018) Contrasting role of defect-induced carbon nanotubes in electromagnetic interference shielding. J Phys Chem C 122: 19913-19920. doi: 10.1021/acs.jpcc.8b04813
    [14] Kumar A, Gupta A, Sharma KV (2015) Thermal and mechanical properties of ureaformaldehyde (UF) resin combined with multiwalled carbon nanotubes (MWCNT) as nanofiller and fiberboards prepared by UF-MWCNT. Holzforschung 69: 199-205. doi: 10.1515/hf-2014-0038
    [15] Mazov IN, Kuznetsov VL, Krasnikov DV, et al. (2011) Structure and properties of multiwall carbon nanotubes/polystyrene composites prepared via coagulation precipitation technique. J Nanotechnol 2011: 648324.
    [16] Ke K, Wang Y, Liu XQ, et al. (2012) A comparison of melt and solution mixing on the dispersion of carbon nanotubes in a poly(vinylidene fluoride) matrix. Compos Part B-Eng 43: 1425-1432. doi: 10.1016/j.compositesb.2011.09.007
    [17] Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39: 5194-5205. doi: 10.1021/ma060733p
    [18] Choudhary V, Gupta A (2011) Polymer/carbon nanotube nanocomposites, In: Yellampalli S, Carbon Nanotubes-Polymer Nanocomposites, Croatia: Janeza Trdine 951000 Rijeka, 65-90.
    [19] Mansoor M, Shahid M (2016) Carbon nanotube-reinforced aluminum composite produced by induction melting. J Appl Res Technol 14: 215-224. doi: 10.1016/j.jart.2016.05.002
    [20] Liang F, Beach JM, Kobashi K, et al. (2006) In situ polymerization initiated by single-walled carbon nanotube salts. Chem Mater 18: 4764-4767. doi: 10.1021/cm0607536
    [21] Zeng H, Gao C, Wang Y, et al. (2006) In situ polymerization approach to multiwalled carbon nanotubes-reinforced nylon 1010 composites: Mechanical properties and crystallization behavior. Polymer 47: 113-122. doi: 10.1016/j.polymer.2005.11.009
    [22] Funck A, Kaminsky W (2007) Polypropylene carbon nanotube composites by in situ polymerization. Compos Sci Technol 67: 906-915. doi: 10.1016/j.compscitech.2006.01.034
    [23] Saeed K, Park SY, Haider S, et al. (2009) In situ polymerization of multi-walled carbon nanotube/nylon-6 nanocomposites and their electrospun nanofibers. Nanoscale Res Lett 4: 39-46. doi: 10.1007/s11671-008-9199-0
    [24] Samal SS, Bal S (2008) Carbon nanotube reinforced ceramic matrix composites-A review. JMMCE 7: 355-370. doi: 10.4236/jmmce.2008.74028
    [25] Rul S, Lefèvre-schlick F, Capria E et al. (2004) Percolation of single-walled carbon nanotubes in ceramic matrix nanocomposites. Acta Mater 52: 1061-1067. doi: 10.1016/j.actamat.2003.10.038
    [26] Elshalakany AB, Osman TA, Khattab A, et al. (2014) Microstructure and mechanical properties of MWCNTs reinforced A356 aluminum alloys cast nanocomposites fabricated by using a combination of rheocasting and squeeze casting techniques. J Nanomater 2014: 386370.
    [27] Esawi AMK, Morsi K, Sayed A, et al. (2010) Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites. Compos Sci Technol 70: 2237-2241. doi: 10.1016/j.compscitech.2010.05.004
    [28] Pérez BR, Pérez BF, Estrada GI, et al. (2011) Characterization of Al2024-CNTs composites produced by mechanical alloying. Powder Technol 212: 390-396. doi: 10.1016/j.powtec.2011.06.007
    [29] Rais L, Sharma DR, Sharma DV (2013) Synthesis and structural characterization of Al-CNT metal matrix composite using physical mixing method. IOSR J Appl Phys 5: 54-57. doi: 10.9790/4861-0545457
    [30] Liao J, Tan MJ, Ramanujan RV, et al. (2011) Carbon nanotube evolution in aluminum matrix during composite fabrication process. Mater Sci Forum 690: 294-297. doi: 10.4028/www.scientific.net/MSF.690.294
    [31] Kuzumaki T, Miyazawa K, Ichinose H, et al. (1998) Processing of carbon nanotube reinforced aluminum composite. J Mater Res 13: 2445-2449. doi: 10.1557/JMR.1998.0340
    [32] Hanizam H, Salleh MS, Omar MZ, et al. (2019) Effect of magnesium surfactant on wettability of carbon nanotube in A356 alloy composite. J Adv Manuf Technol 13: 33-44.
    [33] Noguchi T, Magario A, Fuzukawa S, et al. (2004) Carbon nanotube/aluminium composites with uniform dispersion. Mater Trans 45: 602-604. doi: 10.2320/matertrans.45.602
    [34] Chen B, Umeda J, Kondoh K (2018) Study on aluminum matrix composites reinforced with singly dispersed carbon nanotubes. J Jpn Soc Powder Powder Metall 65: 139-144. doi: 10.2497/jjspm.65.139
    [35] Liao J, Tan MJ (2011) A simple approach to prepare Al/CNT composite: spread-dispersion (SD) method. Mater Lett 65: 2742-2744. doi: 10.1016/j.matlet.2011.05.067
    [36] Peng T, Chang I (2015) Uniformly dispersion of carbon nanotube in aluminum powders by wet shake-mixing approach. Powder Technol 284: 32-39. doi: 10.1016/j.powtec.2015.06.039
    [37] Kwon H, Leparoux M (2012) Hot extruded carbon nanotube reinforced aluminum matrix composite materials. Nanotechnology 23: 415701. doi: 10.1088/0957-4484/23/41/415701
    [38] Kim D, Seong B, Van G, et al. (2014) Microstructures and mechanical properties of CNT/AZ31 composites produced by mechanical alloying. Curr Nanosci 10: 40-46. doi: 10.2174/1573413709666131111225525
    [39] Mindivan H, Efe A, Kayali ES (2014) Hot extruded carbon nanotube reinforced magnesium matrix composites and its microstructure, mechanical and corrosion properties. In: Alderman M, Manuel MV, Hort N, et al., Magnesium Technology, Springer-Cham, 2014: 429-433.
    [40] Al-Aqeeli N (2013) Processing of CNTs reinforced Al-based nanocomposites using different consolidation techniques. J Nanomater 2013: 370785.
    [41] Shimizu Y (2011) High strength magnesium matrix composites reinforced with carbon nanotube. In: Czerwinski F, Magnesium alloys-Design, Processing and Properties, Croatia: Janeza Trdine 951000 Rijeka, 491-500.
    [42] Kainer KU (2011) Magnesium Alloys and Their Applications. Weinheim: WILEY-VCH Verlag GmbH.
    [43] Ye HZ, Liu XY (2004) Review of recent studies in magnesium matrix composites. J Mater Sci 39: 6153-6171. doi: 10.1023/B:JMSC.0000043583.47148.31
    [44] Sardar S, Karmakar SK, Das D (2017) Ultrasonic assisted fabrication of magnesium matrix composites: a review. Mater Today 4: 3280-3289.
    [45] Shimizu Y, Miki S, Soga T, et al. (2008) Multi-walled carbon nanotube-reinforced magnesium alloy composites. Scripta Mater 58: 267-270. doi: 10.1016/j.scriptamat.2007.10.014
    [46] Muhammad WNAW, Sajuri Z, Mutoh Y, et al. (2011) Microstructure and mechanical properties of magnesium composites prepared by spark plasma sintering technology. J Alloy Compd 509: 6021-6029. doi: 10.1016/j.jallcom.2011.02.153
    [47] Straffelini G, Dione DCL, Menapace C, et al. (2013) Properties of AZ91 alloy produced by spark plasma sintering and extrusion. Powder Metall 56: 405-410. doi: 10.1179/1743290113Y.0000000060
    [48] Shi HL, Wang XJ, Zhang CL, et al. (2016) A novel melt processing for Mg matrix composites reinforced by multiwalled carbon nanotubes. J Mater Sci Technol 32: 1303-1308.
    [49] Saikrishna N, Reddy GPK, Munirathinam B, et al. (2018) An investigation on the hardness and corrosion behavior of MWCNT/Mg composites and grain refined Mg. J Magnes Alloy 6: 83-89. doi: 10.1016/j.jma.2017.12.003
    [50] Yan Y, Zhang H, Fan J, et al. (2016) Improved mechanical properties of Mg matrix composites reinforced with Al and carbon nanotubes fabricated by spark plasma sintering followed by hot extrusion. J Mater Res 31: 3745-3756. doi: 10.1557/jmr.2016.413
    [51] Rashad M, Pan F, Tang A, et al. (2014) Synergetic effect of graphene nanoplatelets (CNTs) and multi-walled carbon nanotube (MW-CNTs) on mechanical properties of pure magnesium. J Alloy Compd 603: 111-118. doi: 10.1016/j.jallcom.2014.03.038
    [52] Liang J, Li H, Qi L, et al. (2017) Fabrication and mechanical properties of CNTs/Mg composites prepared by combining friction stir processing and ultrasonic assisted extrusion. J Alloy Compd 728: 282-288. doi: 10.1016/j.jallcom.2017.09.009
    [53] Sun F, Shi C, Rhee KY, et al. (2013) In situ synthesis of CNTs in Mg powder at low temperature for fabricating reinforced Mg composites. J Alloy Compd 551: 496-501. doi: 10.1016/j.jallcom.2012.11.053
    [54] Li Q, Viereckl A, Rottmair CA, et al. (2009) Improved processing of carbon nanotube/magnesium alloy composites. Compos Sci Technol 69: 1193-1199. doi: 10.1016/j.compscitech.2009.02.020
    [55] Li Q, Turhan MC, Rottmair CA, et al. (2012) Influence of MWCNT dispersion on corrosion behaviour of their Mg composites. Mater Corros 63: 384-387. doi: 10.1002/maco.201006023
    [56] Rashad M, Pan F, Zhang J, et al. (2015) Use of high energy ball milling to study the role of graphene nanoplatelets and carbon nanotubes reinforced magnesium alloy. J Alloy Compd 646: 223-232. doi: 10.1016/j.jallcom.2015.06.051
    [57] Mindivan H, Efe A, Kosatepe AH, et al. (2014) Fabrication and characterization of carbon nanotube reinforced magnesium matrix composites. Appl Surf Sci 318: 234-243. doi: 10.1016/j.apsusc.2014.04.127
    [58] Akinwekomi, AD, Law WC, Tang CY, et al. (2016) Rapid microwave sintering of carbon nanotube-filled AZ61 magnesium alloy composites. Compos Part B-Eng 93: 302-309. doi: 10.1016/j.compositesb.2016.03.041
    [59] Akinwekomi AD, Law WC, Choy MT, et al. (2018) Processing and characterisation of carbon nanotube-reinforced magnesium alloy composite foams by rapid microwave sintering. Mater Sci Eng A-Struct 726: 82-92. doi: 10.1016/j.msea.2018.04.069
    [60] Zhou X, Su D, Wu C, et al. (2012) Tensile mechanical properties and strengthening mechanism of hybrid carbon nanotube and silicon carbide nanoparticle-reinforced magnesium alloy composites. J Nanomater 2012: 851862.
    [61] Fukuda H, Kondoh K, Umeda J, et al. (2011) Fabrication of magnesium based composites reinforced with carbon nanotubes having superior mechanical properties. Mater Chem Phys 127: 451-458. doi: 10.1016/j.matchemphys.2011.02.036
    [62] Zhao FZ, Feng XH, Yang YS (2016) Microstructure and mechanical properties of CNT-reinforced AZ91D composites fabricated by ultrasonic processing. Acta Metall Sin-Engl 29: 652-660. doi: 10.1007/s40195-016-0438-6
    [63] Thakur SK, Kwee GT, Gupta M (2007) Development and characterization of magnesium composites containing nano-sized silicon carbide and carbon nanotubes as hybrid reinforcements. J Mater Sci 42: 10040-10046. doi: 10.1007/s10853-007-2004-0
    [64] Yoo SJ, Han SH, Kim WJ (2012) Magnesium matrix composites fabricated by using accumulative roll bonding of magnesium sheets coated with carbon-nanotube-containing aluminum powders. Scripta Mater 67: 129-132. doi: 10.1016/j.scriptamat.2012.03.040
    [65] Funatsu K, Fukuda H, Takei R, et al. (2013) Quantitative evaluation of initial galvanic corrosion behavior of CNTs reinforced Mg-Al alloy. Adv Powder Technol 24: 833-837. doi: 10.1016/j.apt.2013.02.002
    [66] Lou JF, Cheng AG, Zhao P, et al. (2019) The significant impact of carbon nanotubes on the electrochemical reactivity of Mg-bearing metallic glasses with high compressive strength. Materials 12: 2989. doi: 10.3390/ma12182989
    [67] Chen D, Chen L, Liu S, et al. (2004) Microstructure and hydrogen storage property of Mg/MWNTs composites. J Alloy Compd 372: 231-237. doi: 10.1016/j.jallcom.2003.08.104
    [68] Thakur SK, Srivatsan TS, Gupta M (2007) Synthesis and mechanical behavior of carbon nanotube-magnesium composites hybridized with nanoparticles of alumina. Mater Sci Eng C-Mater 466: 32-37. doi: 10.1016/j.msea.2007.02.122
    [69] Goh CS, Wei J, Lee LC, et al. (2006) Development of novel carbon nanotube reinforced magnesium nanocomposites using the powder metallurgy technique. Nanotechnology 17: 7-12. doi: 10.1088/0957-4484/17/1/002
    [70] Li Q, Rottmair CA, Singer RF (2010) CNT reinforced light metal composites produced by melt stirring and by high pressure die casting. Compos Sci Technol 70: 2242-2247. doi: 10.1016/j.compscitech.2010.05.024
    [71] He CN, Zhao NQ, Shi CS, et al. (2009) Mechanical properties and microstructures of carbon nanotube-reinforced Al matrix composite fabricated by in situ chemical vapor deposition. J Alloy Compd 487: 258-262. doi: 10.1016/j.jallcom.2009.07.099
    [72] Du Z, Tan MJ, Guo JF, et al. (2016) Aluminium-carbon nanotubes composites produced from friction stir processing and selective laser melting. Materialwiss Werkst 47: 539-548. doi: 10.1002/mawe.201600530
    [73] Simões S, Viana F, Reis MAL, et al. (2017) Aluminum and nickel matrix composites reinforced by CNTs: dispersion/mixture by ultrasonication. Metals 7: 1-11.
    [74] Liao J, Tan MJ, Santoso A (2011) High strength aluminum nanocomposites reinforced with multi-walled carbon nanotubes. Adv Mater Res 311-313: 80-83. doi: 10.4028/www.scientific.net/AMR.311-313.80
    [75] Kwon H, Park DH, Silvain JF, et al. (2010) Investigation of carbon nanotube reinforced aluminum matrix composite materials. Compos Sci Technol 70: 546-550. doi: 10.1016/j.compscitech.2009.11.025
    [76] Perez BR, Estrada GI, Antunez FW, et al. (2008) Novel Al-matrix nanocomposites reinforced with multi-walled carbon nanotubes. J Alloy Compd 450: 323-326. doi: 10.1016/j.jallcom.2006.10.146
    [77] Sridhar I, Narayanan KR (2009) Processing and characterization of MWCNT reinforced aluminum matrix composites. J Mater Sci 44: 1750-1756. doi: 10.1007/s10853-009-3290-5
    [78] Choi HJ, Kwon GB, Lee GY, et al. (2008) Reinforcement with carbon nanotubes in aluminum matrix composites. Scripta Mater 59: 360-363. doi: 10.1016/j.scriptamat.2008.04.006
    [79] Kwon H, Kawasaki A (2009) Extrusion of spark plasma sintered aluminum-carbon nanotube composites at various sintering temperatures. J Nanosci Nanotechnol 9: 6542-6548. doi: 10.1166/jnn.2009.1357
    [80] Deng CF, Wang DZ, Zhang XX, et al. (2007) Processing and properties of carbon nanotubes reinforced aluminum composites. Mater Sci Eng A-Struct 444: 138-145. doi: 10.1016/j.msea.2006.08.057
    [81] Kurita H, Kwon H, Estili M, et al. (2011) Multi-walled carbon nanotube-aluminum matrix composites prepared by combination of hetero-agglomeration method, spark plasma sintering and hot extrusion. Mater Trans 52: 1960-1965. doi: 10.2320/matertrans.M2011146
    [82] Kumar PSSR, Smart DSR, Alexis SJ (2017) Corrosion behaviour of aluminium metal matrix reinforced with multi-wall carbon nanotube. J Asian Ceram Soc 5: 71-75. doi: 10.1016/j.jascer.2017.01.004
    [83] Noguchi T, Magario A, Fukazawa S, et al. (2004) Carbon nanotube/aluminium composites with uniform dispersion. Mater Trans 45: 602-604. doi: 10.2320/matertrans.45.602
    [84] Sun J, Gao L, Li W (2002) Colloidal processing of carbon nanotube/alumina composites. Chem Mater 14: 5169-5172. doi: 10.1021/cm020736q
    [85] Liao J, Tan MJ (2011) Mixing of carbon nanotubes (CNTs) and aluminum powder for powder metallurgy use. Powder Technol 208: 42-48. doi: 10.1016/j.powtec.2010.12.001
    [86] Kim HH, Babu JSS, Kang CG (2013) Fabrication of A356 aluminum alloy matrix composite with CNTs/Al2O3 hybrid reinforcements. Mater Sci Eng A-Struct 573: 92-99. doi: 10.1016/j.msea.2013.02.041
    [87] Simões S, Viana F, Reis MAL, et al. (2015) Influence of dispersion/mixture time on mechanical properties of Al-CNTs nanocomposites. Compos Struct 126: 114-122. doi: 10.1016/j.compstruct.2015.02.062
    [88] Zhou W, Bang S, Kurita H, et al. (2016) Interface and interfacial reactions in multi-walled carbon nanotube-reinforced aluminum matrix composites. Carbon 96: 919-928. doi: 10.1016/j.carbon.2015.10.016
    [89] Yildirim M, Özyürek D, Gürü M (2016) Investigation of microstructure and wear behaviors of al matrix composites reinforced by carbon nanotube. Fuller Nanotub Car N 24: 467-473. doi: 10.1080/1536383X.2016.1182504
    [90] Kumar L, Nasimul AS, Sahoo SK (2017) Mechanical properties, wear behavior and crystallographic texture of Al-multiwalled carbon nanotube composites developed by powder metallurgy route. J Compos Mater 51: 1099-1117. doi: 10.1177/0021998316658946
    [91] Chen B, Li S, Imai H, et al. (2015) Carbon nanotube induced microstructural characteristics in powder metallurgy Al matrix composites and their effects on mechanical and conductive properties. J Alloy Compd 651: 608-615. doi: 10.1016/j.jallcom.2015.08.178
    [92] Chen B, Shen J, Ye X, et al. (2017) Length effect of carbon nanotubes on the strengthening mechanisms in metal matrix composites. Acta Mater 140: 317-325. doi: 10.1016/j.actamat.2017.08.048
    [93] Esawi AMK, Morsi K, Sayed A, et al. (2011) The influence of carbon nanotube (CNT) morphology and diameter on the processing and properties of CNT-reinforced aluminium composites. Compos Part A-Appl S 42: 234-243. doi: 10.1016/j.compositesa.2010.11.008
    [94] Maiti A, Reddy L, Chen F, et al. (2015) Carbon nanotube-reinforced Al alloy-based nanocomposites via spark plasma sintering. J Compos Mater 49: 1937-1946. doi: 10.1177/0021998314541304
    [95] Bakshi SR, Agarwal A (2011) An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites. Carbon 49: 533-544. doi: 10.1016/j.carbon.2010.09.054
    [96] Kwon H, Takamichi M, Kawasaki A, et al. (2013) Investigation of the interfacial phases formed between carbon nanotubes and aluminum in a bulk material. Mater Chem Phys 138: 787-793. doi: 10.1016/j.matchemphys.2012.12.062
    [97] Liu ZY, Xiao BL, Wang WG, et al. (2013) Developing high-performance aluminum matrix composites with directionally aligned carbon nanotubes by combining friction stir processing and subsequent rolling. Carbon 62: 35-42. doi: 10.1016/j.carbon.2013.05.049
    [98] Nie JH, Jia CC, Shi N, et al. (2011) Aluminum matrix composites reinforced by molybdenum-coated carbon nanotubes. Int J Min Met Mater 18: 695-702. doi: 10.1007/s12613-011-0499-5
    [99] Maqbool A, Khalid FA, Hussain MA, et al. (2014) Synthesis of copper coated carbon nanotubes for aluminium matrix composites, IOP Conference Series: Materials Science and Engineering, Pakistan: IOP Publishing, 60: 012040.
    [100] Sinian L, Souzhi S, Tianqin Y, et al. (2005) Microstructure and fracture surfaces of carbon nanotubes/magnesium matrix composite. Mater Sci Forum 488-489: 893-896. doi: 10.4028/www.scientific.net/MSF.488-489.893
    [101] Morisada Y, Fujii H, Nagaoka T, et al. (2006) MWCNTs/AZ31 surface composites fabricated by friction stir processing. Mater Sci Eng A-Struct 419: 344-348. doi: 10.1016/j.msea.2006.01.016
    [102] Goh CS, Wei J, Lee LC, et al. (2006) Simultaneous enhancement in strength and ductility by reinforcing magnesium with carbon nanotubes. Mater Sci Eng A-Struct 423: 153-156. doi: 10.1016/j.msea.2005.10.071
    [103] Yuan X, Huang S (2015) Microstructural characterization of MWCNTs/magnesium alloy composites fabricated by powder compact laser sintering. J Alloy Compd 620: 80-86. doi: 10.1016/j.jallcom.2014.09.128
    [104] Nai MH, Wei J, Gupta M (2014) Interface tailoring to enhance mechanical properties of carbon nanotube reinforced magnesium composites. Mater Des 60: 490-495. doi: 10.1016/j.matdes.2014.04.011
    [105] Park Y, Cho K, Park I, et al. (2011) Fabrication and mechanical properties of magnesium matrix composite reinforced with Si coated carbon nanotubes. Procedia Eng 10: 1446-1450. doi: 10.1016/j.proeng.2011.04.240
    [106] Li CD, Wang XJ, Wu K, et al. (2014) Distribution and integrity of carbon nanotubes in carbon nanotube/magnesium composites. J Alloy Compd 612: 330-336. doi: 10.1016/j.jallcom.2014.05.153
    [107] Li CD, Wang XJ, Liu WQ, et al. (2014) Effect of solidification on microstructures and mechanical properties of carbon nanotubes reinforced magnesium matrix composite. Mater Des 58: 204-208. doi: 10.1016/j.matdes.2014.01.015
    [108] Li CD, Wang XJ, Liu WQ, et al. (2014) Microstructure and strengthening mechanism of carbon nanotubes reinforced magnesium matrix composite. Mater Sci Eng A-Struct 597: 264-269. doi: 10.1016/j.msea.2014.01.008
    [109] Deng C, Zhang X, Ma Y, et al. (2007) Fabrication of aluminum matrix composite reinforced with carbon nanotubes. Rare Metals 26: 450-455. doi: 10.1016/S1001-0521(07)60244-7
    [110] Salas W, Alba-Baena NG, Murr LE (2007) Explosive shock-wave consolidation of aluminum powder/carbon nanotube aggregate mixtures: optical and electron metallography. Metall Mater Trans A 38: 2928-2935. doi: 10.1007/s11661-007-9336-x
    [111] Laha T, Agarwal A, McKechnie T, et al. (2004) Synthesis and characterization of plasma spray formed carbon nanotube reinforced aluminum composite. Mater Sci Eng A-Struct 381: 249-258. doi: 10.1016/j.msea.2004.04.014
    [112] Tokunaga T, Kaneko K, Horita Z (2008) Production of aluminum-matrix carbon nanotube composite using high pressure torsion. Mater Sci Eng A-Struct 490: 300-304. doi: 10.1016/j.msea.2008.02.022
    [113] Lim DK, Shibayanagi T, Gerlich AP (2009) Synthesis of multi-walled CNT reinforced aluminium alloy composite via friction stir processing. Mater Sci Eng A-Struct 507: 194-199. doi: 10.1016/j.msea.2008.11.067
    [114] He C, Zhao N, Shi C, et al. (2007) An approach to obtaining homogeneously dispersed carbon nanotubes in Al powders for preparing reinforced Al-matrix composites. Adv Mater 19: 1128-1132. doi: 10.1002/adma.200601381
    [115] Laha T, Liu Y, Agarwal A (2007) Carbon nanotube reinforced aluminum nanocomposite via plasma and high velocity oxy-fuel spray forming. J Nanosci Nanotechnol 7: 515-524. doi: 10.1166/jnn.2007.18044
    [116] Laha T, Chen Y, Lahiri D, et al. (2009) Tensile properties of carbon nanotube reinforced aluminum nanocomposite fabricated by plasma spray forming. Compos Part A-Appl S 40: 589-594. doi: 10.1016/j.compositesa.2009.02.007
    [117] Laha T, Agarwal A (2008) Effect of sintering on thermally sprayed carbon nanotube reinforced aluminum nanocomposite. Mater Sci Eng A-Struct 480: 323-332. doi: 10.1016/j.msea.2007.07.047
    [118] Bakshi SR, Singh V, Seal S, et al. (2009) Aluminum composite reinforced with multiwalled carbon nanotubes from plasma spraying of spray dried powders. Surf Coat Technol 203: 1544-1554. doi: 10.1016/j.surfcoat.2008.12.004
    [119] Bakshi SR, Singh V, Balani K, et al. (2008) Carbon nanotube reinforced aluminum composite coating via cold spraying. Surf Coat Technol 202: 5162-5169. doi: 10.1016/j.surfcoat.2008.05.042
    [120] Liu ZY, Xiao BL, Wang WG, et al. (2012) Singly dispersed carbon nanotube/aluminum composites fabricated by powder metallurgy combined with friction stir processing. Carbon 50: 1843-1852. doi: 10.1016/j.carbon.2011.12.034
    [121] Jiang L, Li Z, Fan G, et al. (2012) The use of flake powder metallurgy to produce carbon nanotube (CNT)/aluminum composites with a homogenous CNT distribution. Carbon 50: 1993-1998. doi: 10.1016/j.carbon.2011.12.057
    [122] Zhou M, Qu X, Ren L, et al. (2017) The effects of carbon nanotubes on the mechanical and wear properties of AZ31 alloy. Materials 10: 1385. doi: 10.3390/ma10121385
    [123] Orowan E (1934) Zur Kristallplastizität. III. Z Phys 89: 634-659.
    [124] Arsenault RJ, Shi N (1986) Dislocation generation due to differences between the coefficients of thermal expansion. Mater Sci Eng 81: 175-187. doi: 10.1016/0025-5416(86)90261-2
    [125] Clyne TW, Withers PJ (1993) An Introduction to Metal Matrix Composites, Cambridge: Cambridge University Press.
    [126] Paramsothy M, Gupta M (2008) Processing, microstructure, and properties of a Mg/Al bimetal macrocomposite. J Compos Mater 42: 2567-2584. doi: 10.1177/0021998308098369
    [127] Lloyd DJ (1994) Particle reinforced aluminum and magnesium matrix composites. Int Mater Rev 39: 1-23. doi: 10.1179/imr.1994.39.1.1
    [128] Torralba JM, Da CCE, Velasco F (2003) P/M aluminum matrix composites: an overview. J Mater Process Technol 133: 203-206. doi: 10.1016/S0924-0136(02)00234-0
    [129] Asgari M, Fereshteh SF (2016) Production of AZ80/Al composite rods employing non-equal channel lateral extrusion. T Nonferr Metal Soc 26: 1276-1283. doi: 10.1016/S1003-6326(16)64228-0
    [130] Pedersen BD (2013) Preliminary investigations on the manufacture of Al-AZ31 bimetallic composites by the screw extrusion process [MD's Thesis]. Norwegian University of Science and Technology, Norway.
    [131] Wong WLE, Gupta M (2010) Characteristics of aluminum and magnesium based nanocomposites processed using hybrid microwave sintering. J Microwave Power EE 44: 14-27.
    [132] Chen B, Li S, Imai H, et al. (2015) An approach for homogeneous carbon nanotube dispersion in Al matrix composites. Mater Des 72: 1-8. doi: 10.1016/j.matdes.2015.02.003
    [133] Simões S, Viana F, Reis MAL, et al. (2016) Microstructural characterization of aluminum-carbon nanotube nanocomposites produced using different dispersion methods. Microsc Microanal 1: 1-8.
    [134] Azarniya A, Safavi MS, Sovizi S, et al. (2017) Metallurgical challenges in carbon nanotube-reinforced metal matrix nanocomposites. Metals 7: 384. doi: 10.3390/met7100384
    [135] Paramsothy M, Tan X, Chan J, et al. (2013) Carbon nanotube addition to concentrated magnesium alloy AZ81: enhanced ductility with occasional significant increase in strength. Mater Des 45: 15-23. doi: 10.1016/j.matdes.2012.09.001
    [136] Neubauer E, Kitzmantel M, Hulman M, et al. (2010) Potential and challenges of metal-matrix-composites reinforced with carbon nanofibers and carbon nanotubes. Compos Sci Technol 70: 2228-2236. doi: 10.1016/j.compscitech.2010.09.003
    [137] Tarlton T, Sullivan E, Brown J, et al. (2017) The role of agglomeration in the conductivity of carbon nanotube composites near percolation. J Appl Phys 121: 085103. doi: 10.1063/1.4977100
    [138] Zhang Z, Chen DL (2008) Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites. Mater Sci Eng A-Struct 483-484: 148-152. doi: 10.1016/j.msea.2006.10.184
    [139] Zhang Z, Chen DL (2006) Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: a model for predicting their yield strength. Scripta Mater 54: 1321-1326. doi: 10.1016/j.scriptamat.2005.12.017
    [140] Casati R, Vedani M (2014) Metal Matrix composites reinforced by nano-particles-a review. Metals 4: 65-83 doi: 10.3390/met4010065
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5993) PDF downloads(484) Cited by(8)

Article outline

Figures and Tables

Figures(9)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog