Citation: Monika Chandel, Virender Pratap Singh, Rohit Jasrotia, Kirti Singha, Rajesh Kumar. A review on structural, electrical and magnetic properties of Y-type hexaferrites synthesized by different techniques for antenna applications and microwave absorbing characteristic materials[J]. AIMS Materials Science, 2020, 7(3): 244-268. doi: 10.3934/matersci.2020.3.244
[1] | Jasrotia R, Singh VP, Sharma RK, et al. (2019) Analysis of effect of Ag+ ion on microstructure and elemental distribution of strontium W-type hexaferrites. AIP Conference Proceedings 2142: 140004. doi: 10.1063/1.5122517 |
[2] | Jasrotia R, Singh VP, Sharma RK, et al. (2019) Analysis of optical and magnetic study of silver substituted SrW hexagonal ferrites. AIP Conference Proceedings 2142: 090004. doi: 10.1063/1.5122448 |
[3] | Zhang H, Zhou J, Wang Y, et al. (2002) Microstructure and physical characteristics of novel Z-type hexaferrite with Cu modification. J Electroceram 9: 73-79. |
[4] | Zhang H, Zhou J, Wang Y, et al. (2002) Investigation on physical characteristics of novel Z-type Ba3Co2(0.8-x)Cu0.40Zn2xFe24O41 hexaferrite. Mater Lett 56: 397-403. |
[5] | Zhang H, Zhou J, Wang Y, et al. (2002) The effect of Zn ion substitution on electromagnetic properties of low-temperature fired Z-type hexaferrite. Ceram Int 28: 917-923. doi: 10.1016/S0272-8842(02)00074-3 |
[6] | Kračunovska S, Töpfer J (2009) Preparation, thermal stability and permeability behavior of substituted Z-type hexagonal ferrites for multilayer inductors. J Electroceram 22: 227-232. doi: 10.1007/s10832-007-9387-9 |
[7] | Bai Y, Zhou J, Gui Z, et al. (2002) An investigation of the magnetic properties of Co2Y hexaferrite. Mater Lett 57: 807-811. doi: 10.1016/S0167-577X(02)00877-7 |
[8] | Bai Y, Zhou J, Gui Z, et al. (2002) Magnetic properties of Cu, Zn-modified Co2Y hexaferrites. J Magn Magn Mater 246: 140-144. doi: 10.1016/S0304-8853(02)00040-9 |
[9] | Bai Y, Zhou J, Gui Z, et al. (2003) Complex Y-type hexagonal ferrites: an ideal material for high-frequency chip magnetic components. J Magn Magn Mater 264: 44-49. doi: 10.1016/S0304-8853(03)00134-3 |
[10] | Özgür Ü, Alivov Y, Morkoç H (2009) Microwave ferrites, part 1: fundamental properties. J Mater Sci-Mater El 20: 789-834. doi: 10.1007/s10854-009-9923-2 |
[11] | Stergiou CA, Litsardakis G (2016) Y-type hexagonal ferrites for microwave absorber and antenna applications. J Magn Magn Mater 405: 54-61. doi: 10.1016/j.jmmm.2015.12.027 |
[12] | Trukhanov AV, Turchenko VO, Bobrikov IA, et al. (2015) Crystal structure and magnetic properties of the BaFe12-xAlxO19 (x = 0.1-1.2) solid solutions. J Magn Magn Mater 393: 253-259. |
[13] | Trukhanov AV, Kostishyn VG, Panina LV, et al. (2018) Control of electromagnetic properties in substituted M-type hexagonal ferrites. J Alloy Compd 754: 247-256. doi: 10.1016/j.jallcom.2018.04.150 |
[14] | Jasrotia R, Singh VP, Sharma B, et al. (2020) Sol-gel synthesized Ba-Nd-Cd-In nanohexaferrites for high frequency and microwave devices applications. J Alloy Compd 154687. |
[15] | Trukhanov AV, Darwish MA, Panina LV, et al. (2019) Features of crystal and magnetic structure of the BaFe12-xGaxO19 (x ≤ 2) in the wide temperature range. J Alloy Compd 791: 522-529. doi: 10.1016/j.jallcom.2019.03.314 |
[16] | Vinnik DA, Zhivulin VE, Starikov AY, et al. (2020) Influence of titanium substitution on structure, magnetic and electric properties of barium hexaferrites BaFe12-xTixO19. J Magn Magn Mater 498: 166117. doi: 10.1016/j.jmmm.2019.166117 |
[17] | Karilainen AO, Ikonen PM, Simovski CR, et al. (2011) Experimental studies on antenna miniaturisation using magneto-dielectric and dielectric materials. IET Microw Antenna P 5: 495-502. doi: 10.1049/iet-map.2010.0212 |
[18] | Souriou D, Mattei JL, Chevalier A, et al. (2010) Influential parameters on electromagnetic properties of nickel-zinc ferrites for antenna miniaturization. J Appl Phys 107: 09A518. |
[19] | Lee J, Hong YK, Bae S, et al. (2011) Broadband bluetooth antenna based on Co2Z hexaferrite-glass composite. Micro Opt Techn Let 53: 1222-1225. doi: 10.1002/mop.25982 |
[20] | Mattei J-L, Huitema L, Queffelec P, et al. (2011) Suitability of Ni-Zn ferrites ceramics with controlled porosity as granular substrates for mobile handset miniaturized antennas. IEEE T Magn 47: 3720-3723. doi: 10.1109/TMAG.2011.2148109 |
[21] | Lee J, Hong YK, Lee W, et al. (2013) Role of small permeability in gigahertz ferrite antenna performance. IEEE Magn Lett 4: 5000104-5000104. doi: 10.1109/LMAG.2012.2237163 |
[22] | Canneva F, Ferrero F, Chevalier A, et al. (2013) Miniature reconfigurable antenna with magneto dielectric substrate for DVB-H band. Micro Opt Techn Let 55: 2007-2011. doi: 10.1002/mop.27793 |
[23] | Mattei JL, Le Guen E, Chevalier A (2015) Dense and half-dense NiZnCo ferrite ceramics: Their respective relevance for antenna downsizing, according to their dielectric and magnetic properties at microwave frequencies. J Appl Phys 117: 084904. doi: 10.1063/1.4913700 |
[24] | Trukhanov AV, Trukhanov SV, Kostishin VG, et al. (2017) Multiferroic properties and structural features of M-type Al-substituted barium hexaferrites. Phys Solid State 59: 737-745. doi: 10.1134/S1063783417040308 |
[25] | Trukhanov SV, Trukhanov AV, Turchenko VA, et al. (2018) Polarization origin and iron positions in indium doped barium hexaferrites. Ceram Int 44: 290-300. doi: 10.1016/j.ceramint.2017.09.172 |
[26] | Adelskold V (1938) Crystal structure of lead dodecairon (III) oxide. Arkiv for Kemi, Mineralogi och Geologi A 12: 1-9. |
[27] | Arkel A van, Verwey EJW, Bruggen MG (1936) Recueil Tray. chim. Pays-Bas 55: 331. |
[28] | Trukhanov SV (2005) Peculiarities of the magnetic state in the system La0.70Sr0.30MnO3-γ (0 ≤ γ ≤ 0.25). J Exp Theor Phys 100: 95-105. |
[29] | Zdorovets MV, Arbuz A, Kozlovskiy AL (2020) Synthesis of LiBaZrOx ceramics with a core-shell structure. Ceram Inter 46: 6217-6221. doi: 10.1016/j.ceramint.2019.11.090 |
[30] | Trukhanov SV, Lobanovski LS, Bushinsky MV, et al. (2003) Magnetic phase transitions in the anion-deficient La1-xBaxMnO3-x/2 (0 ≤ x≤ 0.50) manganites. J Phys-Condense Mat 15: 1783. doi: 10.1088/0953-8984/15/10/324 |
[31] | Trukhanov SV, Troyanchuk IO, Trukhanov AV, et al. (2006) Concentration-dependent structural transition in the La0.70Sr0.30MnO3-δ system. JETP lett 84: 254-257. |
[32] | Jonker GH, HP Wijn, PB Braun (1956) Ferroxplana, hexagonal ferromagnetic iron-oxide compounds for very high frequencies. Philips Tech Rev 18: 145. |
[33] | Albanese G (1977) Recent advances in hexagonal ferrites by the use of nuclear spectroscopic methods. J Phys Colloq 38: C1-85. |
[34] | Yu HF, Huang KC (2002) Preparation and characterization of ester-derived BaFe12O19 powder. J Mater Res 17: 199-203. doi: 10.1557/JMR.2002.0029 |
[35] | Jaswon MA (1965) An Introduction to Mathematical Crystallography, American: Elsevier. |
[36] | Kaiser M (2009) Effect of nickel substitutions on some properties of Cu-Zn ferrites. J Alloy Compd 468: 15-21. doi: 10.1016/j.jallcom.2008.01.070 |
[37] | Song YY, Ordóñez-Romero CL, Wu M (2009) Millimeter wave notch filters based on ferromagnetic resonance in hexagonal barium ferrites. Appl Phys Lett 95: 142506. doi: 10.1063/1.3246170 |
[38] | Turchenko V, Trukhanov A, Trukhanov S, et al. (2019) Correlation of crystalline and magnetic structures of barium ferrites with dual ferroic properties. J Magn Magn Mater 477: 9-16. doi: 10.1016/j.jmmm.2018.12.101 |
[39] | Turchenko V, Kostishyn VG, Trukhanov S, et al. (2020) Crystal and magnetic structures, magnetic and ferroelectric properties of strontium ferrite partially substituted with in ions. J Alloy Compd 821: 153412. doi: 10.1016/j.jallcom.2019.153412 |
[40] | Braun PB (1957) The crystal structures of a new group of ferromagnetic compounds. Philips Res Rep 12: 491-548. |
[41] | Singh VP, Jasrotia R, Kumar R, et al. (2018) A current review on the synthesis and magnetic properties of M-type hexaferrites material. WJCMP 8: 36. doi: 10.4236/wjcmp.2018.82004 |
[42] | Sugimoto M (1982) Properties of ferroxplana-type hexagonal ferrites, Handbook of Ferromagnetic Materials, Elsevier, 3: 393-440. |
[43] | Novák P, Knížek K, Rusz J (2007) Magnetism in the magnetoelectric hexaferrite system (Ba1-xSrx)2Zn2Fe12O22. Phys Rev B 76: 024432. doi: 10.1103/PhysRevB.76.024432 |
[44] | Salunkhe MY, Kulkarni DK (2004) Structural, magnetic and microstructural study of Sr2Ni2Fe12O22. J Magn Magn Mater 279: 64-68. doi: 10.1016/j.jmmm.2004.01.046 |
[45] | Wiederhorn SM (1969) Fracture surface energy of glass. J Am Ceram Soc 52: 99-105. doi: 10.1111/j.1151-2916.1969.tb13350.x |
[46] | Neckenburger E, Severin H, Vogel JK, et al. (1964) Ferrite hexagonaler Kristallstrustur mit hoher Grenzfrequenz. Z Angew Phys 18: 65. |
[47] | Vinnik MA (1965) Phase relationships in the BaO-CoO-Fe2O3 system. Russ J Inorg Chem 10: 1164-1167. |
[48] | Kuznetsova SI, Naiden EP, Stepanova TN (1988) Topotactic reaction kinetics in the formation of hexagonal ferrite Ba3Co2Fe24O41. Inorg Mater 24: 856-859. |
[49] | Drobek J, Bigelow WC, Wells RG (1961) Electron microscopic studies of growth structures in hexagonal ferrites. J Am Ceram Soc 44: 262-264. doi: 10.1111/j.1151-2916.1961.tb15375.x |
[50] | Almessiere MA, Trukhanov AV, Slimani Y, et al. (2019) Correlation between composition and electrodynamics properties in nanocomposites based on hard/soft ferrimagnetics with strong exchange coupling. Nanomaterials 9: 202. doi: 10.3390/nano9020202 |
[51] | Kozlovskiy A, Kenzhina I, Zdorovets M (2019) Synthesis, phase composition and magnetic properties of double perovskites of A (FeM)O4-x type (A = Ce; M = Ti). Ceram Inter 45: 8669-8676. doi: 10.1016/j.ceramint.2019.01.187 |
[52] | Ahmed MA, Okasha N, El-Dek SI (2008) Preparation and characterization of nanometric Mn ferrite via different methods. Nanotechnology 19: 065603. doi: 10.1088/0957-4484/19/6/065603 |
[53] | Naiden EP, Itin VI, Terekhova OG (2003) Mechanochemical modification of the phase diagrams of hexagonal oxide ferrimagnets. Tech Phys Lett 29: 889-891. doi: 10.1134/1.1631354 |
[54] | Dufour J, López-Vidriero E, Negro C, et al. (1998) Improvement of ceramic method for synthesizing M-type hexaferrites. Chem Eng Commun 167: 227-244. doi: 10.1080/00986449808912702 |
[55] | Tenzer RK (1963) Influence of particle size on the coercive force of barium ferrite powders. J Appl Phys 34: 1267-1268. doi: 10.1063/1.1729465 |
[56] | Mee CD, Jeschke JC (1963) Single-domain properties in hexagonal ferrites. J Appl Phys 34: 1271-1272. doi: 10.1063/1.1729467 |
[57] | Roos W (1980) Formation of chemically coprecipitated barium ferrite. J Am Ceram Soc 63: 601-603. doi: 10.1111/j.1151-2916.1980.tb09843.x |
[58] | Xiong G, Xu M, Mai Z (2001) Magnetic properties of Ba4Co2Fe36O60 nanocrystals prepared through a sol-gel method. Solid State Commun 118: 53-58. doi: 10.1016/S0038-1098(01)00031-X |
[59] | Kour S, Sharma RK, Jasrotia R, et al. (2019) A brief review on the synthesis of maghemite (γ-Fe2O3) for medical diagnostic and solar energy applications. AIP Conference Proceedings, AIP Publishing, 090007. |
[60] | Mishra SK, Pathak LC, Rao V (1997) Synthesis of submicron Ba-hexaferrite powder by a self-propagating chemical decomposition process. Mater Lett 32: 137-141. doi: 10.1016/S0167-577X(97)00027-X |
[61] | Hong YS, Ho CM, Hsu HY, et al. (2004) Synthesis of nanocrystalline Ba(MnTi)xFe12-2xO19 powders by the sol-gel combustion method in citrate acid-metal nitrates system (x = 0, 0.5, 1.0, 1.5, 2.0). J Magn Magn Mater 279: 401-410. doi: 10.1016/j.jmmm.2004.02.008 |
[62] | Junliang L, Yanwei Z, Cuijing G, et al. (2010) One-step synthesis of barium hexaferrite nano-powders via microwave-assisted sol-gel auto-combustion. J Eur Ceram Soc 30: 993-997. doi: 10.1016/j.jeurceramsoc.2009.10.019 |
[63] | Lalegani Z, Nemati A (2017) Influence of synthesis variables on the properties of barium hexaferrite nanoparticles. J Mater Sci-Mater El 28: 4606-4612. doi: 10.1007/s10854-016-6098-5 |
[64] | Pillai V, Kumar P, Hou MJ, et al. (1995) Preparation of nanoparticles of silver halides, superconductors and magnetic materials using water-in-oil microemulsions as nano-reactors. Adv Colloid Interfac 55: 241-269. doi: 10.1016/0001-8686(94)00227-4 |
[65] | Jasrotia R, Singh VP, Kumar R, et al. (2019) Analysis of Cd2+ and In3+ ions doping on microstructure, optical, magnetic and mossbauer spectral properties of sol-gel synthesized BaM hexagonal ferrite based nanomaterials. Results Phys 12: 1933-1941. doi: 10.1016/j.rinp.2019.01.088 |
[66] | Trukhanov SV, Lobanovski LS, Bushinsky MV, et al. (2005) Study of A-site ordered PrBaMn2O6-δ manganite properties depending on the treatment conditions. J Phys-Condens Mat 17: 6495. doi: 10.1088/0953-8984/17/41/019 |
[67] | Jasrotia R, Singh VP, Kumar R, et al. (2020) Raman spectra of sol-gel auto-combustion synthesized Mg-Ag-Mn and Ba-Nd-Cd-In ferrite based nanomaterials. Ceram Int 46: 618-621. doi: 10.1016/j.ceramint.2019.09.012 |
[68] | Bai Y, Zhou J, Gui Z, et al. (2006) Phase formation process, microstructure and magnetic properties of Y-type hexagonal ferrite prepared by citrate sol-gel auto-combustion method. Mater Chem Phys 98: 66-70. doi: 10.1016/j.matchemphys.2005.08.067 |
[69] | Iqbal MJ, Barkat-ul-Ain (2009) Synthesis and study of physical properties of Zr4+-Co2+ co-doped barium hexagonal ferrites. Materials Science and Engineering B 164: 6 -11. doi: 10.1016/j.mseb.2009.05.020 |
[70] | Iqbal MJ, Liaqat F (2010) Physical and electrical properties of nanosized Mn- and Cr-doped strontium Y-type hexagonal ferrites. J Am Ceram Soc 93: 474-480. doi: 10.1111/j.1551-2916.2009.03385.x |
[71] | Badwaik V, Badwaik D, Nanoti V, et al. (2012) Study of some structural and magnetic properties of Sr2Me2Fe11(SnCo)0.5O22 nanoferrites. Int J Know Eng 3: 58-60. |
[72] | Bierlich S, Töpfer J (2012) Zn- and Cu-substituted Co2Y hexagonal ferrites: sintering behavior and permeability. J Magn Magn Mater 324: 1804-1808. doi: 10.1016/j.jmmm.2012.01.006 |
[73] | Jotania RB, Virk HS (2012) Y-type Hexaferrites: structural, dielectric and magnetic properties, In: Virk HS, Kleemann W, Solid State Phenomena, Trans Tech Publications, 189: 209-232. |
[74] | Elahi A, Ahmad M, Ali I, et al. (2013) Preparation and properties of sol-gel synthesized Mg-substituted Ni2Y hexagonal ferrites. Ceram Int 39: 983-990. doi: 10.1016/j.ceramint.2012.07.016 |
[75] | Irfan M, Islam MU, Ali I, et al. (2014) Effect of Y2O3 doping on the electrical transport properties of Sr2MnNiFe12O22 Y-type hexaferrite. Curr Appl Phys 14: 112-117. doi: 10.1016/j.cap.2013.10.010 |
[76] | Ali I, Islam MU, Ashiq MN, et al. (2014) Effect of Eu-Ni substitution on electrical and dielectric properties of Co-Sr-Y-type hexagonal ferrite. Mater Res Bull 49: 338-344. doi: 10.1016/j.materresbull.2013.09.012 |
[77] | Aslam A, Islam MU, Ali I, et al. (2014) High frequency electrical transport properties of CoFe2O4 and Sr2NiMnFe12O22 composite ferrites. Ceram Int 40: 155-162. doi: 10.1016/j.ceramint.2013.05.116 |
[78] | Ali I, Shaheen N, Islam MU, et al. (2014) Study of electrical and dielectric behavior of Tb+ 3 substituted Y-type hexagonal ferrite. J Alloy Compd 617: 863-868. doi: 10.1016/j.jallcom.2014.08.055 |
[79] | Mahmood SH, Zaqsaw MD, Mohsen OE, et al. (2015) Modification of the magnetic properties of Co2Y hexaferrites by divalent and trivalent metal substitutions, In: Jotania RB, Virk HS, Solid State Phenomena, Trans Tech Publications, 241: 93-125. |
[80] | Nikzad A, Ghasemi A, Tehrani MK, et al. (2015) Y-type strontium hexaferrite: the role of Al substitution, structural, and magnetic consequence. J Supercond Novel Magn 28: 3579-3586. doi: 10.1007/s10948-015-3194-3 |
[81] | Mirzaee O, Mohamady R, Ghasemi A, et al. (2015) Study of the magnetic and structural properties of Al-Cr codoped Y-type hexaferrite prepared via sol-gel auto-combustion method. Int J Mod Phys B 29: 1550090. doi: 10.1142/S0217979215500903 |
[82] | Behare AV, Kumar M, Salunkhe Y, Nandanwar AK (2016) Effect of Sol-gel preparation Technique on the properties of magnetically substituted Y-type hexaferrites. International Journal of Engineering Development & Research 4: 2321-9939. |
[83] | Ahmad B, Ashiq MN, Mumtaz S, et al. (2018) Synthesis and electrical behavior of Ni-Ti substituted Y-type hexaferrites for high frequency application. J Magn Magn Mater 451: 787-792. doi: 10.1016/j.jmmm.2017.12.026 |
[84] | Shakeel H, Khan HM, Ali I, et al. (2019) Structural, magnetic and electrical study of rare earth doped Y-type hexaferrites. J Mater Sci-Mater El 30: 6708-6717. doi: 10.1007/s10854-019-00982-1 |
[85] | Trukhanov AV, Almessiere MA, Baykal A, et al. (2019) Influence of the charge ordering and quantum effects in heterovalent substituted hexaferrites on their microwave characteristics. J Alloy Compd 788: 1193-1202. doi: 10.1016/j.jallcom.2019.02.303 |
[86] | Trukhanov AV, Astapovich KA, Almessiere MA, et al. (2020) Pecularities of the magnetic structure and microwave properties in Ba(Fe1-xScx)12O19 (x < 0.1) hexaferrites. J Alloy Compd 822: 153575. doi: 10.1016/j.jallcom.2019.153575 |
[87] | Ali I, Islam MU, Ashiq MN, et al. (2014) Role of Tb-Mn substitution on the magnetic properties of Y-type hexaferrites. J Alloy Compd 599: 131-138. doi: 10.1016/j.jallcom.2014.02.079 |
[88] | Song Y, Zheng J, Sun M, et al. (2016) The electromagnetic and microwave absorbing properties of polycrystalline Y-type Ba1.5Sr0.5CoZnFe12-xAlxO22 hexaferrites over the microwave range. J Mater Sci-Mater El 27: 4131-4138. |
[89] | Pullar RC (2012) Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog Mater Sci 57: 1191-1334. doi: 10.1016/j.pmatsci.2012.04.001 |
[90] | Jasrotia R, Kumar G, Batoo KM, et al. (2019) Synthesis and characterization of Mg-Ag-Mn nano-ferrites for electromagnet applications. Physica B 569: 1-7. doi: 10.1016/j.physb.2019.05.033 |
[91] | Jasrotia R, Singh VP, Kumar R, et al. (2019) Effect of Y3+, Sm3+ and Dy3+ ions on the microstructure, morphology, optical and magnetic properties NiCoZn magnetic nanoparticles. Result Phys 15: 102544. doi: 10.1016/j.rinp.2019.102544 |
[92] | Bai Y, Zhou J, Gui ZL, et al. (2005) Preparation and magnetic properties of Y-type ferroxplana by sol-gel method, In: Pan W, Gong GH, Ge CC, et al., Key Engineering Materials, Trans Tech Publications, 477-480. |
[93] | Ahmad M, Ahmad M, Ali I, et al. (2015) Temperature dependent structural and magnetic behavior of Y-type hexagonal ferrites synthesized by sol-gel autocombustion. J Alloy Compd 651: 749-755. doi: 10.1016/j.jallcom.2015.08.144 |
[94] | Farzin YA, Mirzaee O, Ghasemi A (2016) Synthesis behavior and magnetic properties of Mg-Ni co-doped Y-type hexaferrite prepared by sol-gel auto-combustion method. Mater Chem Phys 178: 149-159. doi: 10.1016/j.matchemphys.2016.04.082 |
[95] | Odeh I, El Ghanem HM, Mahmood SH, et al. (2016) Dielectric and magnetic properties of Zn-substituted Co2Y barium hexaferrite prepared by sol-gel auto combustion method. Physica B 494: 33-40. doi: 10.1016/j.physb.2016.04.037 |
[96] | Know HJ, Shin JY, Oh JH (1994) The microwave absorbing and resonance phenomena of Y type hexagonal ferrite microwave absorber. J Appl Phys 75:6109. doi: 10.1063/1.355476 |
[97] | Xu F, Bai Y, Jiang K, et al. (2012) Characterization of a Y-type hexagonal ferrite-based frequency tunable microwave absorber. Int J Min Met Mater 19: 453-456. doi: 10.1007/s12613-012-0578-2 |
[98] | Xing L, Shun-kang P, Xing Z, et al. (2017) Microwave-absorbing properties of strontium ferrites prepared via sol-gel method. Cryst Res Technol 52: 1700057. doi: 10.1002/crat.201700057 |
[99] | Mohsen Q (2010) Barium hexaferrite synthesis by oxalate precursor route. J Alloy Compd 500: 125-128. doi: 10.1016/j.jallcom.2010.03.230 |
[100] | Dionne GF, Oates DE, Temme DH, et al. (1996) Ferrite-superconductor devices for advanced microwave applications. IEEE T Microw Theory 44: 1361-1368. doi: 10.1109/22.508241 |
[101] | SUZUKI T, ISSHIKI M, OGUCHI T, et al. (1991) Orientation and recording performance for Ba-ferrite tapes. J Magn Soc Jpn 15: S2_833-838. |
[102] | Kong S, Zhang P, Wen X, et al. (2008) Influence of surface modification of SrFe12O19 particles with oleic acid on magnetic microsphere preparation. Particuology 6: 185-190. doi: 10.1016/j.partic.2008.03.004 |
[103] | Cannas C, Ardu A, Peddis D, et al. (2010) Surfactant-assisted route to fabricate CoFe2O4 individual nanoparticles and spherical assemblies. J Colloid Interf Sci 343: 415-422. doi: 10.1016/j.jcis.2009.12.007 |