Research article Topical Sections

Influence of solvent and molecular weight in wrinkle formation in spin-cast polystyrene thin films

  • Received: 26 November 2019 Accepted: 04 February 2020 Published: 20 February 2020
  • The surface morphology of polystyrene thin films formed from various molecular weight polystyrene and solvent conditions is studied. When spin-cast from tetrahydrofuran (THF) wrinkles are formed at the extremities that have periodicity with wavelengths in the μm range and amplitudes in the nm range but varies with molecular weight. A mixed solvent system consisting of THF and dimethylformamide (DMF) leads to periodic structures only with THF-rich compositions. THF and DMF have similar properties relevant to spin-casting: density, surface tension, molecular weight, and viscosity but different boiling points and room temperature vapor pressures, demonstrating that formation periodicity requires a volatile solvent. The formation of the surface structures is attributed to the Marangoni effect and the film thicknesses and wave parameters are shown to be consistent with literature models.

    Citation: Chunyi Tang, Matthew Mullen, William B. Euler. Influence of solvent and molecular weight in wrinkle formation in spin-cast polystyrene thin films[J]. AIMS Materials Science, 2020, 7(1): 60-74. doi: 10.3934/matersci.2020.1.60

    Related Papers:

  • The surface morphology of polystyrene thin films formed from various molecular weight polystyrene and solvent conditions is studied. When spin-cast from tetrahydrofuran (THF) wrinkles are formed at the extremities that have periodicity with wavelengths in the μm range and amplitudes in the nm range but varies with molecular weight. A mixed solvent system consisting of THF and dimethylformamide (DMF) leads to periodic structures only with THF-rich compositions. THF and DMF have similar properties relevant to spin-casting: density, surface tension, molecular weight, and viscosity but different boiling points and room temperature vapor pressures, demonstrating that formation periodicity requires a volatile solvent. The formation of the surface structures is attributed to the Marangoni effect and the film thicknesses and wave parameters are shown to be consistent with literature models.


    加载中


    [1] Su J, Chen J (2017) Synthetic porous materials applied in hydrogenation reactions. Micropor Mesopor Mat 237: 246-259. doi: 10.1016/j.micromeso.2016.09.039
    [2] Pan L, Qiu H, Dou C, et al. (2010) Conducting polymer nanostructures: template synthesis and applications in energy storage. Int J Mol Sci 11: 2636-2657. doi: 10.3390/ijms11072636
    [3] Share K, Westover A, Li M, et al. (2016) Surface engineering of nanomaterials for improved energy storage-A review. Chem Eng Sci 154: 3-19. doi: 10.1016/j.ces.2016.05.034
    [4] Gor GY (2014) Adsorption stress changes the elasticity of liquid argon confined in a nanopore. Langmuir 30: 13564-13569. doi: 10.1021/la503877q
    [5] Ghosh J, Faller R (2008) Comparing the density of states of binary Lennard-Jones glasses in bulk and film. J Chem Phys 128: 124509. doi: 10.1063/1.2883697
    [6] Zhan D, Han L, Zhang J, et al. (2016) Confined chemical etching for electrochemical machining with nanoscale accuracy. Accounts Chem Res 49: 2596-2604. doi: 10.1021/acs.accounts.6b00336
    [7] Huang Z, Geyer N, Werner P, et al. (2011) Metal assisted chemical etching of silicon: A review. Adv Mater 23: 285-308. doi: 10.1002/adma.201001784
    [8] Chen Y, Pépin A (2001) Nanofabrication: conventional and nonconventional methods. Electrophoresis 22: 187-207. doi: 10.1002/1522-2683(200101)22:2<187::AID-ELPS187>3.0.CO;2-0
    [9] Fourche G (1995) An overview of the basic aspects of polymer adhesion. Part I: Fundamentals. Polym Eng Sci 35: 957-967.
    [10] Adamson AW, Gast AP (1997) Physical Chemistry of Surfaces, 6th Eds, New York: New York: Interscience publishers, 150: 180.
    [11] Kuwabara K, Ogino M, Motowaki S, et al. (2004) Fluorescence measurements of nanopillars fabricated by high-aspect ratio nanoprint technology. Microelectron Eng 73: 752-756.
    [12] Genet C, Ebbesen TW (2007) Light in tiny holes. Nature 445: 39-46. doi: 10.1038/nature05350
    [13] Levitsky IA, Euler WB, Tokranova N, et al. (2007) Fluorescent polymer-porous silicon microcavity devices for explosives detection. Appl Phys Lett 90: 041904. doi: 10.1063/1.2432247
    [14] Lalanne P, Sauvan C, Hugonin JP (2008) Photon confinement in photonic crystal nanocavities. Laser Photonics Rev 2: 514-526. doi: 10.1002/lpor.200810018
    [15] Koo WH, Jeong SM, Araoka F, et al. (2010) Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles. Nat Photonics 4: 222-226. doi: 10.1038/nphoton.2010.7
    [16] Zhang L, Lang X, Hirata A, et al. (2011) Wrinkled nanoporous gold films with ultrahigh surface-enhanced raman scattering enhancement. ACS Nano 5: 4407-4413. doi: 10.1021/nn201443p
    [17] Hsiao YS, Charan S, Wu FY, et al. (2012) Improving the light trapping efficiency of plasmonic polymer solar cells through photon management. J Phys Chem C 116: 20731-20737. doi: 10.1021/jp306124n
    [18] Matoian MA, Sweetman R, Hall EC, et al. (2013) Light trapping to amplify metal enhanced fluorescence with application for sensing TNT. J Fluoresc 23: 877-880. doi: 10.1007/s10895-013-1232-8
    [19] Zhou W, Liu R, Tang D, et al. (2013) Luminescence and local photonic confinement of single ZnSe:Mn nanostructure and the shape dependent lasing behavior. Nanotechnology 24: 055201. doi: 10.1088/0957-4484/24/5/055201
    [20] Mischok A, Brückner R, Sudzius M, et al. (2014) Photonic confinement in laterally structured metal-organic microcavities. Appl Phys Lett 105: 051108. doi: 10.1063/1.4892533
    [21] Khang DY, Jiang H, Huang Y, et al. (2006) A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 311: 208-212. doi: 10.1126/science.1121401
    [22] Kim DH, Ahn JH, Choi WM, et al. (2008) Stretchable and foldable silicon integrated circuits. Science 320: 507-511. doi: 10.1126/science.1154367
    [23] Lin PC, Yang S (2009) Mechanically switchable wetting on wrinkled elastomers with dual-scale roughness. Soft Matter 5: 1011-1018. doi: 10.1039/b814145b
    [24] Ohzono T, Monobe H (2010) Morphological transformation of a liquid micropattern on dynamically tunable microwrinkles. Langmuir 26: 6127-6132. doi: 10.1021/la1006204
    [25] Khare K, Zhou J, Yang S (2009) Tunable open-channel microfluidics on soft poly(dimethylsiloxane) (PDMS) substrates with sinusoidal grooves. Langmuir 25: 12794-12799. doi: 10.1021/la901736n
    [26] Reiter G (1993) Unstable thin polymer films-rupture and dewetting processes. Langmuir 9: 1344-1351. doi: 10.1021/la00029a031
    [27] Sharma A, Reiter G (1996) Instability of thin polymer films on coated substrates: rupture, dewetting, and drop formation. J Colloid Interf Sci 178: 383-399. doi: 10.1006/jcis.1996.0133
    [28] Müller-Buschbaum P, Bauer E, Wunnicke O, et al. (2005) The control of thin film morphology by the interplay of dewetting, phase separation, and microphase separation. J Phys-Condens Mat 17: S363. doi: 10.1088/0953-8984/17/9/006
    [29] Wu N, Pease III LF, Russel WB (2006) Toward large-scale alignment of electrohydrodynamic patterning of thin polymer films. Adv Funct Mater 16: 1992-1999. doi: 10.1002/adfm.200600092
    [30] Schaffer E, Thurn-Albrecht T, Russel TP, et al. (2000) Electrically induced structure formation and pattern transfer. Nature 403: 874-877. doi: 10.1038/35002540
    [31] Bunz UHF (2006) Breath figures as a dynamic templating method for polymers and nanomaterials. Adv Mater 18: 973-989. doi: 10.1002/adma.200501131
    [32] Hernandez-Guerrero M, Stenzel MH (2012) Honeycomb structures polymer films via breath figures. Polym Chem 3: 563-577. doi: 10.1039/C1PY00219H
    [33] Schaffer E, Harkema S, Blossey R, et al. (2002) Temperature gradient induced instability in polymer films. Europhys Lett 60: 255-261. doi: 10.1209/epl/i2002-00344-9
    [34] Schaffer E, Harkema S, Roerdink M, et al. (2003) Thermomechanical lithography: pattern replication using a temperature gradient driven instability. Adv Mater 15: 514-517. doi: 10.1002/adma.200390119
    [35] Xue L, Zhang J, Han Y (2012) Phase separation induced ordered patterns in thin polymer blend films. Prog Polym Sci 37: 564-594. doi: 10.1016/j.progpolymsci.2011.09.001
    [36] Reiter G, Castelein G, Hoerner P, et al. (1999) Nanometer-scale surface patterns with long range order greated by crystallization of diblock copolymers. Phys Rev Lett 83: 3844-3847. doi: 10.1103/PhysRevLett.83.3844
    [37] Lim HS, Lee SY, Lee NE, et al. (2018) Patterning of wrinkled polymer surfaces by single-step electron irradiation. Langmuir 34: 5290-5296. doi: 10.1021/acs.langmuir.8b00403
    [38] Childs WR, Nuzzo RG (2002) Decal transfer microlithography: A new soft-lithographic patterning method. J Am Chem Soc 124: 13583-13596. doi: 10.1021/ja020942z
    [39] Fournier AC, Cumming H, McGrath KM (2010) Assembly of two- and three-dimensionally patterned silicate materials using responsive soft templates. Dalton Trans 39: 6524-6531. doi: 10.1039/c0dt00067a
    [40] Shen M (2010) Nano-structuring solid surfaces with femtosecond laser irradiations for applications. Mod Phys Lett B 24: 257-269. doi: 10.1142/S0217984910022457
    [41] Torres JM, Stafford CM, Vogt BD (2010) Impact of molecular mass on the elastic modulus of thin polystyrene films. Polymer 51: 4211-4217. doi: 10.1016/j.polymer.2010.07.003
    [42] Feng C, Yi Z, Dumée LF, et al. (2015) Shrinkage induced stretchable micro-wrinkled reduced graphene oxide composite with recoverable conductivity. Carbon 93: 878-886. doi: 10.1016/j.carbon.2015.06.011
    [43] Meng J, Xie J, Han X, et al. (2016) Surface wrinkling on polydopamine film. App Surf Sci 371: 96-101. doi: 10.1016/j.apsusc.2016.02.239
    [44] Müller-Buschbaum P, Gutmann JS, Wolkenhauer M, et al. (2001) Solvent-induced surface morphology of thin polymer films. Macromolecules 34: 1369-1375. doi: 10.1021/ma0009193
    [45] Xia F, Razavi B, Xu H, et al. (2002) Dependence of threshold thickness of crystallization and film morphology on film processing conditions in poly(vinylidene fluoride-trifluoroethylene) copolymer thin films. J Appl Phys 92: 3111-3115. doi: 10.1063/1.1503395
    [46] Pauchard L, Allain C (2003) Buckling instability induced by polymer solution drying. Europhys Lett 62: 897-903. doi: 10.1209/epl/i2003-00457-7
    [47] He L, Zhang L, Liang H (2008) Microdomain morphology of lamella-forming diblock copolymer confined in a thin film. J Polym Sci Pol Phys 47: 1-10.
    [48] Li B, Cao YP, Feng XQ, et al. (2012) Mechanics of morphological instabilities and surface wrinkling in soft materials: A review. Soft Matter 8: 5728-5745. doi: 10.1039/c2sm00011c
    [49] Ramanathan M, Lokitz BS, Messman JM, et al. (2013) Spontaneous wrinkling in Azlactone-based functional polymer thin films in 2D and 3D geometries for guided nanopatterning. J Mater Chem C 1: 2097-2101. doi: 10.1039/c3tc00946g
    [50] Rodríguez-Hernández J (2015) Wrinkled interfaces: taking advantage of surface instabilities to pattern polymer surfaces. Prog Polym Sci 42: 1-41. doi: 10.1016/j.progpolymsci.2014.07.008
    [51] Chapman CT, Paci JT, Lee WK, et al. (2016) Interfacial effects on nanoscale wrinkling in gold-covered polystyrene. ACS Appl Mater Inter 8: 24339-24344. doi: 10.1021/acsami.6b08554
    [52] Schaefer C, Michels JJ, van der Schoot P (2016) Structuring of thin-film polymer mixtures upon solvent evaporation. Macromolecules 49: 6858-6870. doi: 10.1021/acs.macromol.6b00537
    [53] Emslie AG, Bonner FT, Peck LG (1958) Flow of a viscous liquid on a rotating disk. J Appl Phys 29: 858-862. doi: 10.1063/1.1723300
    [54] Bornside DE, Macosko CW, Scriven LE (1991) Spin coating of a PMMA/Chlorobenzene solution. J Electrochem Soc 138: 317-320. doi: 10.1149/1.2085563
    [55] Du XM, Orignac X, Almeida RM (1995) Striation-free, spin-coated sol-gel optical films. J Am Ceram Soc 78: 2254-2256. doi: 10.1111/j.1151-2916.1995.tb08650.x
    [56] Birnie III, DP (2001) Rational solvent selection strategies to combat striation formation during spin coating of thin films. J Mater Res 16: 1145-1154. doi: 10.1557/JMR.2001.0158
    [57] De Gennes PG (2002) Solvent evaporation of spin cast films: "Crust" effects. Eur Phys J E 7: 31-34.
    [58] Bassou N, Rharbi Y (2009) Role of Benard-Marangoni instabilities during solvent evaporation in polymer surface corrugations. Langmuir 25: 624-632. doi: 10.1021/la802979a
    [59] Birnie III, DP (2013) A model for the drying control cosolvent selection for spin-coating uniformity: The thin film limit. Langmuir 29: 9072-9078. doi: 10.1021/la401106z
    [60] Fowler PD, Ruscher C, McGraw JD, et al. (2016) Controlling Marangoni-induced instabilities in spin-cast polymer films: How to prepare uniform films. Eur Phys J E 39: 90. doi: 10.1140/epje/i2016-16090-9
    [61] Wagner HL (1985) The Mark-Houwink-Sakurada equation for the viscosity of atactic polystyrene. J Phys Chem Ref Data 14: 1101-1106. doi: 10.1063/1.555740
    [62] Smallwood IM (1996) Handbook of Organic Solvent Properties, New York: John Wiley & Sons.
  • matersci-07-01-60-s001.pdf
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5004) PDF downloads(536) Cited by(4)

Article outline

Figures and Tables

Figures(8)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog