

AIMS Materials Science, 7(1): 60–74. DOI: 10.3934/matersci.2020.1.60 Received: 26 November 2019 Accepted: 04 February 2020 Published: 20 February 2020

http://www.aimspress.com/journal/Materials

Research article

Influence of solvent and molecular weight in wrinkle formation in

spin-cast polystyrene thin films

Chunyi Tang^{1,2}, Matthew Mullen³ and William B. Euler^{3,*}

- ¹ College of Biological and Chemical Engineering, Guangxi University of Science and Technology, No. 268 Donghuan Road, Chengzhong District, Liuzou, Guangxi, 545006, P. R. China
- ² Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Guangxi University of Science and Technology, Liuzhou 545006, P. R. China
- ³ Department of Chemistry, 140 Flagg Road, University of Rhode Island, Kingston, RI, 02881, USA

Supplementary

* Correspondence: Email: weuler@chm.uri.edu; Tel: +14018745090.

Figure S1. Polystyrene average film thickness as a function of spin speed for molecular weight = 350000 g/mol. The solid line represents a fit of $h = a\omega^{-\frac{1}{2}}$, where ω is the spin speed. The error bars represent a standard deviation of 4 measurements.

Figure S2. Film thickness as a function of PS concentration spun at 1200 rpm for multiple molecular weights. The box indicates the thickness region of \sim 310 nm, which can be attained for any molecular weight by adjusting the solution concentration.

Figure S3. Line scan profiles of the wrinkled polystyrene surface. Black lines are data and the red lines are fits to Eq 2. (a) $M_w = 1000 \text{ g/mol}$, $a_o = 2 \pm 1 \text{ nm}$, $\lambda_o = 65 \pm 3 \text{ µm}$; (b) $M_w = 13000 \text{ g/mol}$, $a_o = 16 \pm 4 \text{ nm}$, $\lambda_o = 77 \pm 3 \text{ µm}$; (c) $M_w = 53000 \text{ g/mol}$, $a_o = 56 \pm 34 \text{ nm}$, $\lambda_o = 100 \pm 1 \text{ µm}$; (d) $M_w = 105000 \text{ g/mol}$, $a_o = 110 \pm 35 \text{ nm}$, $\lambda_o = 114 \pm 3 \text{ µm}$; and (e) $M_w = 350000 \text{ g/mol}$, $a_o = 70 \pm 10 \text{ nm}$, $\lambda_o = 76 \pm 16 \text{ µm}$. Uncertainties are the standard error of the fit.

Figure S4. Line scan (black line) and fit to Eq 2 (main text) (red dashed line) for a film formed from a solution composed of 4% (w/v) PS in a solvent composed of 10% DMF and 90% THF (v/v). The spin time was 15 s and the rotation rate was 1200 rpm. The fit parameters are $a_o = 194 \pm 7$ nm and $\lambda_o = 220 \pm 2 \mu$ m. The uncertainties are the standard error of the fit.

Figure S5. Line scan (black line) and fit to Eq 2 (main text) (red dashed line) for a film formed from a solution composed of 4% (w/v) PS in a solvent composed of 10% DMF and 90% THF (v/v). The spin time was 25 s and the rotation rate was 1200 rpm. The fit parameters are $a_o = 184 \pm 7$ nm and $\lambda_o = 265 \pm 3 \mu$ m. The uncertainties are the standard error of the fit.

Figure S6. Line scan (black line) and fit to Eq 2 (main text) (red dashed line) for a film formed from a solution composed of 4% (w/v) PS in a solvent composed of 10% DMF and 90% THF (v/v). The spin time was 35 s and the rotation rate was 1200 rpm. The fit parameters are $a_o = 109 \pm 7$ nm and $\lambda_o = 128 \pm 1 \mu$ m. The uncertainties are the standard error of the fit.

Figure S7. Line scan (black line) and fit to Eq 2 (main text) (red dashed line) for a film formed from a solution composed of 4% (w/v) PS in a solvent composed of 10% DMF and 90% THF (v/v). The spin time was 45 sec and the rotation rate was 1200 rpm. The fit parameters are $a_o = 115 \pm 3$ nm and $\lambda_o = 211 \pm 1$ µm. The uncertainties are the standard error of the fit.

Figure S8. Line scan (black line) and fit to Eq 2 (main text) (red dashed line) for a film formed from a solution composed of 4% (w/v) PS in a solvent composed of 10% DMF and 90% THF (v/v). The spin time was 45 s and the rotation rate was 600 rpm. The fit parameters are $a_o = 151 \pm 5$ nm and $\lambda_o = 149 \pm 1 \mu m$. The uncertainties are the standard error of the fit.

Figure S9. Line scan (black line) and fit to Eq 2 (main text) (red dashed line) for a film formed from a solution composed of 4% (w/v) PS in a solvent composed of 10% DMF and 90% THF (v/v). The spin time was 45 sec and the rotation rate was 1800 rpm. The fit parameters are $a_o = 164 \pm 5$ nm and $\lambda_o = 144 \pm 1$ µm. The uncertainties are the standard error of the fit.

Figure S10. Line scan (black line) and fit to Eq 2 (main text) (red dashed line) for a film formed from a solution composed of 4% (w/v) PS in a solvent composed of 10% DMF and 90% THF (v/v). The spin time was 45 s and the rotation rate was 2400 rpm. The fit parameters are $a_o = 106 \pm 8$ nm and $\lambda_o = 110 \pm 1$ µm. The uncertainties are the standard error of the fit.

Figure S11. Line scan (black line) and fit to Eq 2 (main text) (red dashed line) for a film formed from a solution composed of 4% (w/v) PS in a solvent composed of 30% DMF and 70% THF (v/v). The spin time was 45 s and the rotation rate was 1200 rpm. The fit parameters are $a_o = 41 \pm 2$ nm and $\lambda_o = 263 \pm 6$ µm. The uncertainties are the standard error of the fit.

Figure S12. Line scan (black line) and fit to Eq 2 (main text) (red dashed line) for a film formed from a solution composed of 4% (w/v) PS in a solvent composed of 50% DMF and 50% THF (v/v). The spin time was 45 s and the rotation rate was 1200 rpm. An acceptable was not found.

Figure S13. Line scan (black line) and fit to Eq 2 (main text) (red dashed line) for a film formed from a solution composed of 4% (w/v) PS in a solvent composed of 90% DMF and 10% THF (v/v). The spin time was 45 s and the rotation rate was 1200 rpm. An acceptable was not found.

© 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)