Citation: Hendra Suherman, Irmayani. Optimization of compression moulding parameters of multiwall carbon nanotube/synthetic graphite/epoxy nanocomposites with respect to electrical conductivity[J]. AIMS Materials Science, 2019, 6(4): 621-634. doi: 10.3934/matersci.2019.4.621
[1] | Hermann A, Chaudhuri T, Spagnol P (2005) Bipolar plates for PEM fuel cells: a review. Int J Hydrogen Energ 30: 1297–1302. doi: 10.1016/j.ijhydene.2005.04.016 |
[2] | Kamarudin SK, Daud WRW, Som AM, et al. (2006) Technical design and economic evaluation of a PEM fuel cell system. J Power Sources 157: 641–649. doi: 10.1016/j.jpowsour.2005.10.053 |
[3] | Kishi H, Kuwata M, Matsuda S, et al. (2004) Damping properties of thermoplastic-elastomer interleaved carbon fiber-reinforced epoxy composites. Compos Sci Technol 64: 2517–2523. doi: 10.1016/j.compscitech.2004.05.006 |
[4] | Liao SH, Yen CY, Weng CC, et al. (2008) Preparation and properties of carbon nanotube/polypropylene nanocomposite bipolar plates for polymer electrolyte membrane fuel cells. J Power Sources 185: 1225–1232. doi: 10.1016/j.jpowsour.2008.06.097 |
[5] | Rybak A, Boiteux G, Melis F, et al. (2010) Conductive polymer composites based on metallic nanofiller as smart materials for current limiting devices. Compos Sci Technol 70: 410–416. doi: 10.1016/j.compscitech.2009.11.019 |
[6] | Dweiri R, Suherman H, Sulong AB, et al. (2018) Structure-property-processing investigation of electrically conductive polypropylene nanocomposites. Sci Eng Compos Mater 25: 1177–1186. doi: 10.1515/secm-2017-0122 |
[7] | Dweiri R (2015) The Potential of Using Graphene Nanoplatelets for Electrically Conductive Compression-Molded Plates. Jordan J Mech Ind Eng 9: 1–8. |
[8] | Suherman H, Sulong AB, Zakaria MY, et al. (2018) Electrical conductivity and physical changes of functionalized carbon nanotubes/graphite/staniless steel (SS316L)/polyprophelene composites immersed in an acidic solution. Songklanakarin J Sci Technol 40: 105–112. |
[9] | Suherman H, Duskiardi, Suardi A, et al. (2019) Enhance the electrical conductivity and tensile strength of conductive polymer composites using hybrid conductive filler. Songklanakarin J Sci Technol 41: 174–180. |
[10] | Suherman H, Mahyoedin Y, Septe E, et al. (2019) Properties of graphite/epoxy composites: the in-plane conductivity, tensile strength and Shore hardness. AIMS Mater Sci 6: 165–173. doi: 10.3934/matersci.2019.2.165 |
[11] | Lee JH, Jang YK, Hong CE, et al. (2009) Effect of carbon fillers on properties of polymer composite bipolar plates of fuel cells. J Power Sources 193: 523–529. doi: 10.1016/j.jpowsour.2009.04.029 |
[12] | Hu N, Masuda Z, Yamamoto G, et al. (2008) Effect of fabrication process on electrical properties of polymer/multi-wall carbon nanotube nanocomposite. Compos Part A-Appl S 39: 893–903. doi: 10.1016/j.compositesa.2008.01.002 |
[13] | Suherman H, Sahari J, Sulong AB (2011) Electrical properties of carbon nanotubes-based epoxy nanocomposites for high electrical conductive plate. Adv Mater Res 264–265: 559–564. |
[14] | Suherman H, Sulong AB, Sahari J (2013) Effect of the compression molding parameters on the in-plane and through-plane conductivity of carbon nanotubess/graphite/epoxy nanocomposites as bipolar plate material for a polymer electrolyte membrane fuel cell. Ceram Int 39: 1277–1284. doi: 10.1016/j.ceramint.2012.07.059 |
[15] | Yi XS, Wu G, Ma D (1998) Property balancing for polyethylene-based carbon black-filled conductive composites. J Appl Polym Sci 67: 131–138. doi: 10.1002/(SICI)1097-4628(19980103)67:1<131::AID-APP15>3.0.CO;2-4 |
[16] | Du C, Ming P, Hou M, et al. (2010) Preparation and properties of thin epoxy/compressed expanded graphite composite bipolar plates for proton exchange membrane fuel cells. J Power Sources 195: 794–800. doi: 10.1016/j.jpowsour.2009.08.033 |
[17] | San FGB, Okur O (2017) The effect of compression molding parameters on the electrical and physical properties of polymer composite bipolar plates. Int J Hydrogen Energ 42: 23054–23069. doi: 10.1016/j.ijhydene.2017.07.175 |
[18] | Akhtar MN, Sulong AB, Umer A, et al. (2018) Multi-component MWCNT/NG/EP-based bipolar plates with enhanced mechanical and electrical characteristics fabricated by compression moulding. Ceram Int 44: 14457–14464. doi: 10.1016/j.ceramint.2018.05.059 |
[19] | Selamat MZ, Sahari J, Muhamad N, et al. (2011) Simultaneous optimization for multiple responses on the compression moulding parameters of composite graphite–polypropylene using Taguchi method. Key Eng Mater 471–472: 361–366. |
[20] | Sulong AB, Park J, Azhari CH, et al. (2011) Process optimization of melt spinning and mechanical strength enhancement of functionalized multi-walled carbon nanotubes reinforcing polyethylene fibers. Compos Part B-Eng 42: 11–17. doi: 10.1016/j.compositesb.2010.09.014 |
[21] | Chang CY, Huang R, Lee PC, et al. (2011) Application of a weighted Grey-Taguchi method for optimizing recycled aggregate concrete mixtures. Cement Concrete Comp 33: 1038–1049. doi: 10.1016/j.cemconcomp.2011.06.005 |
[22] | Liu YT, Chang WC, Yamagata YA (2010) A study on optimal compensation cutting for an aspheric surface using the Taguchi method. CIRP J Manuf Sci Tec 3: 40–48. doi: 10.1016/j.cirpj.2010.03.001 |
[23] | Lin JL, Wang KS, Yan BH, et al. (2000) Optimization of the electrical discharge machining process based on the Taguchi method with fuzzy logics. J Mater Process Tech 102: 48–55. doi: 10.1016/S0924-0136(00)00438-6 |
[24] | Wang Y, Northwood DO (2008) Optimization of the polypyrrole-coating parameters for proton exchange membrane fuel cell bipolar plates using the Taguchi method. J Power Sources 185: 226–232. doi: 10.1016/j.jpowsour.2008.07.036 |
[25] | Nalbant M, Gokkaya H, Sur G (2007) Application of Taguchi method in the optimization of cutting parameters for surface roughness in turning. Mater Design 28: 1379–1385. doi: 10.1016/j.matdes.2006.01.008 |
[26] | Das NC, Chaki TK, Khastgir D (2002) Effect of processing parameters, applied pressure and temperature on the electrical resistivity of rubber-based conductive composites. Carbon 40: 807–816. doi: 10.1016/S0008-6223(01)00229-9 |
[27] | Roy RK (2001) Design of experiments using the Taguchi approach: 16 steps to product and process improvement, New York: John Willey & Sons. |
[28] | Roberts MJ, Russo R (1999) A Student's Guide to Analysis of Variance, New York, USA: Routledge. |
[29] | Antunes RA, De Oliveira MCL, Ett G, et al. (2011) Carbon materials in composite bipolar plates for polymer electrolyte membrane fuel cells: A review of the main challenges to improve electrical performance. J Power Sources 196: 2945–2961. doi: 10.1016/j.jpowsour.2010.12.041 |
[30] | Boey FYC, Lye SW (1992) Void reduction in autoclave processing of thermoset composites: Part 2: Void reduction in a microwave curing process. Composites 23: 266–270. doi: 10.1016/0010-4361(92)90187-Y |
[31] | Bin Z, Bingchu M, Chunhui S, et al. (2006) Study on the electrical and mechanical properties of polyvinylidene fluroide/titanium silicon carbide composite bipolar plates. J Power Sources 161: 997–1001. doi: 10.1016/j.jpowsour.2006.05.024 |
[32] | Hui C, Hong-bo L, Li Y, et al. (2010) Study on the preparation and properties of novolac epoxy/graphite composite bipolar plate for PEMFC. Int J Hydrogen Energ 35: 3105–3109. doi: 10.1016/j.ijhydene.2009.08.030 |
[33] | Zakaria MZ, Suherman H, Sahari J, et al. (2013) Effect of mixing parameters on electrical conductivity of carbon black/graphite/epoxy nanocomposite using Taguchi method. Appl Mech Mater 393: 68–73. doi: 10.4028/www.scientific.net/AMM.393.68 |
[34] | Ma PC, Liu MY, Zhang H, et al. (2009) Enhanced electrical conductivity of nanocomposites containing hybrid fillers of carbon nanotubes and carbon black. ACS Appl Mater Inter 1: 1090–1096. doi: 10.1021/am9000503 |
[35] | Dweiri R, Suherman H, Sulong AB, et al. (2018) Structure-property-processing investigation of electrically conductive polypropylene nanocomposites. Sci Eng Compos Mater 25: 1177–1186. doi: 10.1515/secm-2017-0122 |