Citation: Luca Spiridigliozzi, Grazia Accardo, Emilio Audasso, Barbara Bosio, Sung Pil Yoon, Gianfranco Dell’Agli. Synthesis of easily sinterable ceramic electrolytes based on Bi-doped 8YSZ for IT-SOFC applications[J]. AIMS Materials Science, 2019, 6(4): 610-620. doi: 10.3934/matersci.2019.4.610
[1] | Panthi D, Tsutsumi A (2014) Micro-tubular solid oxide fuel cell based on a porous yttria-stabilized zirconia support. Sci Rep 4: 5754. |
[2] | Nagao M, Kobayashi K, Hibino T (2014) Low-temperature sintering of yttria-stabilized zirconia using bismuth-vanadium oxide as a sintering aid at 800 °C. Chem Lett 43: 1887–1889. doi: 10.1246/cl.140712 |
[3] | Dell'Agli G, Mascolo G (2003) Sinterability of 8Y-ZrO2 powders hydrothermally synthesized at low temperature. Solid State Ionics 160: 363–371. doi: 10.1016/S0167-2738(03)00205-4 |
[4] | Barad C, Shekel G, Shandalov M, et al. (2017) Internal nano voids in yttria stabilized zirconia (YSZ) powder. Materials 10: 1440. doi: 10.3390/ma10121440 |
[5] | Shekel G, Barad C, Hayun H, et al. (2018) Applying the general effective media (GEM) approach for analyzing the thermal conductivity of ZrO2-8YSZ composites. Phys Chem Chem Phys 20: 16666–16672. doi: 10.1039/C8CP00824H |
[6] | Barad C, Shamir D, Cahana M, et al. (2019) Influence of galia (Ga2O3) addition on the phase evolution and grain growth behavior of voided yttria stabilized zirconia (YSZ) powder. J Alloy Compd 783: 286–291. doi: 10.1016/j.jallcom.2018.12.318 |
[7] | Joh DW, Park JH, Kim D, et al. (2017) Functionally graded bismuth oxide/zirconia bilayer electrolytes for high performance intermediate-temperature solid oxide fuel cells (IT-SOFCs) ACS Appl Mater Inter 9: 8443–8449. |
[8] | Spiridigliozzi L, Dell'Agli G, Biesuz M, et al. (2016) Effect of the precipitating agent on the synthesis and sintering behavior of 20 mol Sm-doped ceria. Adv Mater Sci Eng 2016: 6096123. |
[9] | Dell'Agli G, Spiridigliozzi L, Pansini M, et al. (2018) Effect of the carbonate environment on morphology and sintering behaviour of variously co-doped (Ca, Sr, Er, Pr) Samarium-doped Ceria in co-precipitation/hydrothermal synthesis. Ceram Int 44: 17935–17944. doi: 10.1016/j.ceramint.2018.06.269 |
[10] | Jaiswala N, Tanwar K, Suman R, et al. (2019) A brief review on ceria based solid electrolytes for solid oxide fuel cells. J Alloy Compd 781: 984–1005. doi: 10.1016/j.jallcom.2018.12.015 |
[11] | Jolley AG, Jayathilake R, Wachsman ED (2019) Optimizing rhombohedral Bi2O3 conductivity for low temperature SOFC electrolytes. Ionics 2019: 1–6. |
[12] | Flegler AJ, Burye TE, Yang Q, et al. (2014) Cubic yttria stabilized zirconia sintering additive impacts: a comparative study. Ceram Int 40: 16323–16335. doi: 10.1016/j.ceramint.2014.07.071 |
[13] | Mahato N, Banerjee A, Gupta A, et al. (2015) Progress in material selection for solid oxide fuel cell technology: a review. Prog Mater Sci 72: 141–337. doi: 10.1016/j.pmatsci.2015.01.001 |
[14] | Da SFS, De STM (2017) Novel materials for solid oxide fuel cell technologies: a literature review. Int J Hydrogen Energ 42: 26020–26036. doi: 10.1016/j.ijhydene.2017.08.105 |
[15] | Accardo G, Frattini D, Ham HC, et al. (2018) Improved microstructure and sintering temperature of bismuth nano-doped GDC powders synthesized by direct sol-gel combustion. Ceram Int 44: 3800–3809. doi: 10.1016/j.ceramint.2017.11.165 |
[16] | Liu L, Zhou Z, Tian H, et al. (2016) Effect of bismuth oxide on the microstructure and electrical conductivity of yttria stabilized zirconia. Sensors 16: 369–379. doi: 10.3390/s16030369 |
[17] | Dell'Agli G, Mascolo G, Mascolo MC, et al. (2005) Crystallization-stabilization mechanism of yttria-doped zirconia by hydrothermal treatment of mechanical mixtures of zirconia xerogel and crystalline yttria. J Cryst Growth 280: 255–265. doi: 10.1016/j.jcrysgro.2005.03.004 |
[18] | Akhtar K, Haq IU, Hira U (2013) Synthesis and characterization of uniform zirconia particles by homogeneous precipitation method. High Temp Mat Pr 32: 391–395. |
[19] | Accardo G, Dell'Agli G, Frattini D, et al. (2017) Electrical behaviour and microstructural characterization of magnesia co-doped ScSZ nanopowders synthesized by urea co-precipitation. Chem Eng T 57: 1345–1350. |
[20] | Da Silva CA, Ribeiro NFP, Souza MMVM (2009) Effect of the fuel type on the synthesis of yttria stabilized zirconia by combustion method. Ceram Int 35: 3441–3446. doi: 10.1016/j.ceramint.2009.06.005 |
[21] | Ghahfarokhi SS, Mamoory RS, Kalashami AG (2018) Inverse precipitation synthesis of ZrO2 nanopowder and in-situ coating on MWCNTs. Ceram Int 44: 13556–13564. doi: 10.1016/j.ceramint.2018.04.188 |
[22] | Barad C, Kimmel G, Hayun H, et al. (2018) Influence of galia (Ga2O3) addition on phase transitions and crystal growth of zirconia (ZrO2). J Mater Sci 53: 12741–12749. doi: 10.1007/s10853-018-2556-1 |
[23] | Razik NA (1985) Precise lattice constants determination of cubic crystals from x-ray powder diffractometric measurements. Appl Phys A-Mater 37: 187–189. doi: 10.1007/BF00617505 |
[24] | Dell'Agli G, Mascolo G, Mascolo MC, et al. (2008) Drying effect on thermal behaviour and structural modification of hydrous zirconia gel. J Am Ceram Soc 91: 3375–3379. doi: 10.1111/j.1551-2916.2008.02635.x |
[25] | Dell'Agli G, Mascolo G, Mascolo MC, et al. (2006) Weakly-agglomerated nanocrystalline (ZrO2)0.9(Yb2O3)0.1 powders hydrothermally synthesized at low temperature. Solid State Sci 8: 1046–1050. |
[26] | Kim DJ (1989) Lattice parameters, ionic conductivities, and solubility limits in fluorite-structure MO2 oxide (M = Hf4+, Zr4+, Ce4+, Th4+, U4+) solid solutions. J Am Ceram Soc 72: 1415–1421. doi: 10.1111/j.1151-2916.1989.tb07663.x |
[27] | Andini S, Montagnaro F, Santoro L, et al. (2018) Mechanochemical processing of blast furnace slag for its reuse as adsorbent. Chem Eng T 32: 22 99–2304. |
[28] | Frattini D, Accardo G, Moreno A, et al. (2017) A novel nickel-aluminum alloy with titanium for improved anode performance and properties in molten carbonate fuel cells. J Power Sources 352: 90–98. doi: 10.1016/j.jpowsour.2017.03.112 |
[29] | Spiridigliozzi L, Dell'Agli G, Marocco A, et al. (2018) Engineered co-precipitation chemistry with ammonium carbonate for scalable synthesis and sintering of improved Sm0.2Ce0.8>O1.90 and Gd0.16Pr0.04Ce0.8O1.90 electrolytes for IT-SOFCs. J Ind Eng Chem 59: 17–27. |