Review Special Issues

Microplastic in soil–current status in Europe with special focus on method tests with Austrian samples

  • Received: 29 November 2019 Accepted: 08 April 2020 Published: 15 April 2020
  • Within the last decade the production of plastic steadily increased and so did the amount of plastic waste. When bigger plastic pieces enter the environment, they are fragmented over time due to mechanical and environmental forces. The occurring and the directly released microplastic cause severe problems on soil organisms, due to alteration of physical properties and chemical interactions in the habitat. Main emissions sources of microplastic are different kinds of abrasions (road traffic, packaging, fibers of textiles during washing), waste disposal and drifts. Remains of mulching foils and protection nets spoil agricultural soil as well as the application of compost, sewage sludge and digestate, which may contain microplastic. Once released, microplastic accumulates much stronger in terrestrial than in aquatic systems. Spectroscopic, microscopic and thermo-analytical methods are commonly used to analyze microplastic in soil. The main challenges are to differentiate between soil matrix and plastic particles and to get rid of disturbing organic compounds. Unfortunately, there is no soil without plastic, no environmental blind sample to allow the finding of method limits. Inter-laboratory cooperation and data collection should allow estimation and comparison of emissions not only on European but on global scale. Investigations of Austrian samples provided a first orientation for regulations and measures to avoid further environmental pollution.

    Citation: Katharina Meixner, Mona Kubiczek, Ines Fritz. Microplastic in soil–current status in Europe with special focus on method tests with Austrian samples[J]. AIMS Environmental Science, 2020, 7(2): 174-191. doi: 10.3934/environsci.2020011

    Related Papers:

  • Within the last decade the production of plastic steadily increased and so did the amount of plastic waste. When bigger plastic pieces enter the environment, they are fragmented over time due to mechanical and environmental forces. The occurring and the directly released microplastic cause severe problems on soil organisms, due to alteration of physical properties and chemical interactions in the habitat. Main emissions sources of microplastic are different kinds of abrasions (road traffic, packaging, fibers of textiles during washing), waste disposal and drifts. Remains of mulching foils and protection nets spoil agricultural soil as well as the application of compost, sewage sludge and digestate, which may contain microplastic. Once released, microplastic accumulates much stronger in terrestrial than in aquatic systems. Spectroscopic, microscopic and thermo-analytical methods are commonly used to analyze microplastic in soil. The main challenges are to differentiate between soil matrix and plastic particles and to get rid of disturbing organic compounds. Unfortunately, there is no soil without plastic, no environmental blind sample to allow the finding of method limits. Inter-laboratory cooperation and data collection should allow estimation and comparison of emissions not only on European but on global scale. Investigations of Austrian samples provided a first orientation for regulations and measures to avoid further environmental pollution.


    加载中


    [1] PlasticsEurope (2015) Plastic-the facts 2015, 1160 Brussels-Belgium, PlasticsEurope.
    [2] PlasticsEurope (2018) Plastic-the facts 2018, 1040 Brussels-Belgium, PlasticsEurope.
    [3] Secretariat-General (2018) Communication from the commission of the European parliament, the council, the European economic and social committee and the committee of the regions-A European Strategy for Plastics in a Circular Economy, European Commission.
    [4] Sexlinger K (2019) Kunststoffe im Boden, Montfortstraße 4, 6900 Bregenz, Institut für Umwelt und Lebensmittelsicherheit (Umweltinstitut).
    [5] Lechner A, Keckeis H, Lumesberger-Loisl F, et al. (2014) The Danube so colourful: A potpourri of plastic litter outnumbers fish larvae in Europe"s second largest river. Environ Pollut 188: 177-181. doi: 10.1016/j.envpol.2014.02.006
    [6] Derraik JGB (2002) The pollution of the marine environment by plastic debris: a review. Mar Pollut Bull 44: 842-852. doi: 10.1016/S0025-326X(02)00220-5
    [7] A European Strategy for Plastics in a Circular Economy (2018) Brussels, Belgium, European Commission.
    [8] Bertling J, Hamann L, Bertling R (2018) Kunststoffe in der Umwelt. Fraunhofer UMSICHT.
    [9] ISO (2019) Plastics-Environmental aspects-Analysis of relevant terms used in the sector and need for standardization, ISO.
    [10] Liebmann B, Brielmann H, Heinfellner H, et al. (2015) Mikroplastik in der Umwelt Vorkommen, Nachweis und Handlungsbedarf, Wien, Umweltbundesamt.
    [11] Braun U, Jekel M, Gerdts G, et al. (2018) Microplastics Analytics-Sampling, Preparation and Detection Methods, Bundesministerium für Bildung und Forschung Unterabteilung Nachhaltigkeit; Zukunftsvorsorge.
    [12] Ibeh CC (2011) Thermoplastic Materials: Properties, Manufacturing Methods, and Applications, CRC Press.
    [13] de Souza Machado AA, Kloas W, Zarfl C, et al. (2018) Microplastics as an emerging threat to terrestrial ecosystems. Glob Change Biol 24: 1405-1416. doi: 10.1111/gcb.14020
    [14] Circular Economy Package Report: Questions & Answers (2019) Brussels, European Commission.
    [15] Bundesministerium für Nachhaltigkeit und Tourismus (2020) Fremdstoffe, Mikroplastik und deren Inhaltsstoffe im Boden, Wien, Arbeitsgruppe des Fachbeirates für Bodenfruchtbarkeit und Bodenschutz.
    [16] Weithmann N, Möller JN, Löder MGJ, et al. (2018) Organic fertilizer as a vehicle for the entry of microplastic into the environment. Sci Adv 4.
    [17] Mahon AM, O'Connell B, Healy MG, et al. (2017) Microplastics in Sewage Sludge: Effects of Treatment. Environ Sci Technol 51: 810-818. doi: 10.1021/acs.est.6b04048
    [18] He D, Luo Y, Lu S, et al. (2018) Microplastics in soils: Analytical methods, pollution characteristics and ecological risks. TrAC Trends Anal Chem 109: 163-172. doi: 10.1016/j.trac.2018.10.006
    [19] Bläsing M, Amelung W (2018) Plastics in soil: Analytical methods and possible sources. Sci Total Environ 612: 422-435. doi: 10.1016/j.scitotenv.2017.08.086
    [20] Nadherny-Borutin S (2019) Kunststoffrecycling-eine potentielle Mikrokunststoffquelle?, In: University of Natural Sources and Life Sciences, Vienna, Institute of Waste Management (ABF-BOKU) (Ed.), Vom Makro-zum Mikro-Kunststoff-Wo ist die Abfallwirtschaft gefordert?, Muthgasse 18, 1190 Vienna.
    [21] Eurostat-Population (2019) 2019. Available from: https://ec.europa.eu/eurostat/tgm/table.do?tab=table&init=1&plugin=1&language=de&pcode=tps00001.
    [22] Biologisch abbaubare Mulchfolien aus nachwachsenden Rohstoffen-Informationen und Verwendungshinweise-(2009) Hannover, Freising.
    [23] European Commission (2019) European Commission-European Commission, Closing the loop: Commission delivers on Circular Economy Action Plan, 2019. Available from: https://ec.europa.eu/commission/presscorner/detail/en/IP_19_1480.
    [24] Council Directive 86/278/EEC of 12 June 1986 on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture (1986).
    [25] 40 CFR 503-STANDARDS FOR THE USE OR DISPOSAL OF SEWAGE SLUDGE (2003).
    [26] Verordnung des Bundesministers für Land-und Forstwirtschaft, Umwelt und Wasserwirtschaft, mit der Bestimmungen zur Durchführung des Düngemittelgesetzes 1994 erlassen werden (2004).
    [27] Verordnung des Bundesministers für Land-und Forstwirtschaft, Umwelt und Wasserwirtschaft über Qualitätsanforderungen an Komposte aus Abfällen (2001).
    [28] Verordnung der Landesregierung zur Durchführung des Gesetzes zum Schutz der Bodenqualität (2018).
    [29] Verordnung des Bundesministers für Land-und Forstwirtschaft über die allgemeine Begrenzung von Abwasseremissionen in Fließgewässer und öffentliche Kanalisationen (1996).
    [30] Verordnung über das Inverkehrbringen von Düngemitteln, Bodenhilfsstoffen, Kultursubstraten und Pflanzenhilfsmitteln (2012).
    [31] Verordnung über die Verwertung von Bioabfällen auf landwirtschaftlich, forstwirtschaftlich und gärtnerisch genutzten Böden (2017).
    [32] Directive 94/62/EC of 20 December 1994 on packaging and packaging waste (1994).
    [33] EU DIRECTIVE 2019/904 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 5 June 2019 on the reduction of the impact of certain plastic products on the environment (2019).
    [34] Nachhaltigkeitsagenda für Getränkeverpackungen 2018-2030-Fortschreibung bis zum Jahr 2030 unterzeichnet (2019) WKO, 2019. Available from: https://www.wko.at/service/netzwerke/Grundsaetze-Nachhaltigkeitsagenda_fuer_Getraenkeverpackunge.html.
    [35] Madigan MT, Martinko JM, Bender KS, et al. (2014) Brock Biology of Microorganisms, Boston, Pearson.
    [36] de Souza Machado AA, Lau CW, Till J, et al. (2018) Impacts of Microplastics on the Soil Biophysical Environment. Environ Sci Technol 52: 9656-9665. doi: 10.1021/acs.est.8b02212
    [37] Amlinger F, Peyr S, Geszti J, et al. (2006) Evaluierung der nachhaltig positiven Wirkung von Kompost auf die Fruchtbarkeit und Produktivität von Böden, Lebensministerium.
    [38] de Souza Machado AA, Lau CW, Kloas W, et al. (2019) Microplastics Can Change Soil Properties and Affect Plant Performance. Environ Sci Technol 53: 6044-6052. doi: 10.1021/acs.est.9b01339
    [39] Van A, Rochman CM, Flores EM, et al. (2012) Persistent organic pollutants in plastic marine debris found on beaches in San Diego, California. Chemosphere 86: 258-263. doi: 10.1016/j.chemosphere.2011.09.039
    [40] Dierkes G, Lauschke T, Becher S, et al. (2019) Quantification of microplastics in environmental samples via pressurized liquid extraction and pyrolysis-gas chromatography. Anal Bioanal Chem 411: 6959-6968. doi: 10.1007/s00216-019-02066-9
    [41] Liu M, Lu S, Song Y, et al. (2018) Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China. Environ Pollut 242: 855-862. doi: 10.1016/j.envpol.2018.07.051
    [42] Paul A, Wander L, Becker R, et al. (2019) High-throughput NIR spectroscopic (NIRS) detection of microplastics in soil. Environ Sci Pollut Res 26: 7364-7374. doi: 10.1007/s11356-018-2180-2
    [43] Scheurer M, Bigalke M (2018) Microplastics in Swiss Floodplain Soils. Environ Sci Technol 52: 3591-3598. doi: 10.1021/acs.est.7b06003
    [44] Dümichen E, Eisentraut P, Bannick CG, et al. (2017) Fast identification of microplastics in complex environmental samples by a thermal degradation method. Chemosphere 174: 572-584. doi: 10.1016/j.chemosphere.2017.02.010
    [45] Smidt E, Meissl K, Tintner J (2008) The influence of waste sample preparation on reproducibility of thermal data. Thermochim Acta 468: 55-60. doi: 10.1016/j.tca.2007.11.021
    [46] Eckert S (2019) Analyse von Mikroplastikpartikel.
    [47] Watteau F, Dignac M-F, Bouchard A, et al. (2018) Microplastic Detection in Soil Amended With Municipal Solid Waste Composts as Revealed by Transmission Electronic Microscopy and Pyrolysis/GC/MS. Front Sustain Food Syst 2.
    [48] Zhang S, Yang X, Gertsen H, et al. (2018) A simple method for the extraction and identification of light density microplastics from soil. Sci Total Environ 616-617: 1056-1065. doi: 10.1016/j.scitotenv.2017.10.213
    [49] Löder MGJ, Gerdts G (2015) Methodology Used for the Detection and Identification of Microplastics-A Critical Appraisal, In: Bergmann M, Gutow L, Klages M (Eds.), Marine Anthropogenic Litter, Cham, Springer International Publishing, 201-227.
    [50] Claessens M, Van Cauwenberghe L, Vandegehuchte MB, et al. (2013) New techniques for the detection of microplastics in sediments and field collected organisms. Mar Pollut Bull 70: 227-233. doi: 10.1016/j.marpolbul.2013.03.009
    [51] Hurley RR, Lusher AL, Olsen M, et al. (2018) Validation of a Method for Extracting Microplastics from Complex, Organic-Rich, Environmental Matrices. Environ Sci Technol 52: 7409-7417. doi: 10.1021/acs.est.8b01517
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(8273) PDF downloads(920) Cited by(35)

Article outline

Figures and Tables

Figures(3)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog