Citation: Mingyong Xiong, Ping Yu, Jingyu Wang, Kechun Zhang. Improving Engineered Escherichia coli strains for High-level Biosynthesis of Isobutyrate[J]. AIMS Bioengineering, 2015, 2(2): 60-74. doi: 10.3934/bioeng.2015.2.60
[1] | McFarlane J, Robinson S (2007) Survey of Alternative Feedstocks for Commodity Chemical Manufacturing. Available from: http://infoornlgov/sites/publications/files/Pub8760pdf. |
[2] | Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451: 86-89. doi: 10.1038/nature06450 |
[3] | Causey TB, Zhou S, Shanmugam KT, et al. (2003) Engineering the metabolism of Escherichia coli W3110 for the conversion of sugar to redox-neutral and oxidized products: homoacetate production. Proc Natl Acad Sci USA 100: 825-832. doi: 10.1073/pnas.0337684100 |
[4] | Pfeifer BA, Admiraal SJ, Gramajo H, et al. (2001) Biosynthesis of complex polyketides in a metabolically engineered strain of E. coli. Science 291: 1790-1792. |
[5] | Steen EJ, Kang Y, Bokinsky G, et al. (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463: 559-562. doi: 10.1038/nature08721 |
[6] | Yan Y, Chemler J, Huang L, et al. (2005) Metabolic engineering of anthocyanin biosynthesis in Escherichia coli. Appl Environ Microbiol 71: 3617-3623. doi: 10.1128/AEM.71.7.3617-3623.2005 |
[7] | Zha W, Shao Z, Frost JW, et al. (2004) Rational pathway engineering of type I fatty acid synthase allows the biosynthesis of triacetic acid lactone from D-glucose in vivo. J Am Chem Soc 126: 4534-4535. doi: 10.1021/ja0317271 |
[8] | Alper H, Miyaoku K, Stephanopoulos G (2005) Construction of lycopene-overproducing Escherichia coli strains by combining systematic and combinatorial gene knockout targets. Nat Biotechnol 23: 612-616. doi: 10.1038/nbt1083 |
[9] | Bastian S, Liu X, Meyerowitz JT, et al. (2011) Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli. Metab Eng 13: 345-352. doi: 10.1016/j.ymben.2011.02.004 |
[10] | Park JH, Lee KH, Kim TY, et al. (2007) Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proc Natl Acad Sci USA 104: 7797. doi: 10.1073/pnas.0702609104 |
[11] | Zhang K, Woodruff AP, Xiong M, et al. (2011) A synthetic metabolic pathway for production of the platform chemical isobutyric acid. ChemSusChem 4: 1068-1070. doi: 10.1002/cssc.201100045 |
[12] | Godshall MA Value-Added Products for a Sustainable Sugar Industry. Sustainability of the Sugar and Sugar-Ethanol Industries: Eggleston, G.; ACS Symposium Series 1058; American Chemical Society: Washington, DC, 2010 1253-1268. |
[13] | Screening Information Data Set (SIDS) for High Production Volume Chemicals, Organization for Economic Cooperation and Development. (2005) Available from: http://wwwinchemorg/documents/sids/sids/25265774pdf. |
[14] | Lee IY, Hong WK, Hwang YB, et al. (1996) Production of D-β-hydroxyisobutyric acid from isobutyric acid by Candida rugosa. J Ferment Bioeng 81: 79-82. doi: 10.1016/0922-338X(96)83126-6 |
[15] | Millet JMM (1998) FePO catalysts for the selective oxidative dehydrogenation of isobutyric acid into methacrylic acid. Catal Rev Sci Eng 40: 1-38. doi: 10.1080/01614949808007104 |
[16] | Marx A, Poetter M, Buchholz S, et al. (2007) Microbiological Production of 3-Hydroxyisobutyric Acid. US Patent App 20: 773. |
[17] | Nagai K (2001) New developments in the production of methyl methacrylate. Appl Catal A-Gen 221: 367-377. doi: 10.1016/S0926-860X(01)00810-9 |
[18] | Atsumi S, Wu TY, Eckl EM, et al. (2010) Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Appl Microbiol Biotechnol 85: 651-657. doi: 10.1007/s00253-009-2085-6 |
[19] | Baba T, Ara T, Hasegawa M, et al. (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2: 10.1038. |
[20] | Atsumi S, Wu TY, Eckl EM, et al. (2010) Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Appl Microbiol Biotechnol 85: 651-657. doi: 10.1007/s00253-009-2085-6 |
[21] | Atsumi S, Wu T-Y, Eckl E-M, et al. (2010) Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Appl Microbiol Biotechnol 85: 651-657. doi: 10.1007/s00253-009-2085-6 |
[22] | Kallio P, Pásztor A, Thiel K, et al. (2014) An engineered pathway for the biosynthesis of renewable propane. Nat Commun 5. |
[23] | Rodriguez GM, Atsumi S (2012) Isobutyraldehyde production from Escherichia coli by removing aldehyde reductase activity. Microb Cell Fact 11: 90. doi: 10.1186/1475-2859-11-90 |
[24] | Åkesson M, Hagander P, Axelsson JP (2001) Avoiding acetate accumulation in Escherichia coli cultures using feedback control of glucose feeding. Biotechnol Bioeng 73: 223-230. doi: 10.1002/bit.1054 |
[25] | Thompson BG, Kole M, Gerson DF (1985) Control of ammonium concentration in Escherichia coli fermentations. Biotechnol Bioeng 27: 818-824. doi: 10.1002/bit.260270610 |
[26] | Riesenberg D, Menzel K, Schulz V, et al. (1990) High cell density fermentation of recombinant Escherichia coli expressing human interferon alpha 1. Appl Environ Microbiol 34: 77-82. |
[27] | Eiteman MA, Altman E (2006) Overcoming acetate in Escherichia coli recombinant protein fermentations. Trends Biotechnol 24: 530-536. doi: 10.1016/j.tibtech.2006.09.001 |
[28] | Koh BT, Nakashimada U, Pfeiffer M, et al. (1992) Comparison of acetate inhibition on growth of host and recombinant E. coli K12 strains. Biotechnol Lett 14: 1115-1118. doi: 10.1007/BF01027012 |
[29] | Zhu Y, Eiteman M, DeWitt K, et al. (2007) Homolactate fermentation by metabolically engineered Escherichia coli strains. Appl Environ Microbiol 73: 456-464. doi: 10.1128/AEM.02022-06 |
[30] | Stephanopoulos G, Aristidou AA, Nielsen JH, et al. (1998) Metabolic engineering: principles and methodologies: Academic Press. |
[31] | Warnecke T, Gill RT (2005) Organic acid toxicity, tolerance, and production in Escherichia coli biorefining applications. Microb Cell Fact 4: 25. doi: 10.1186/1475-2859-4-25 |
[32] | Yim H, Haselbeck R, Niu W, et al. (2011) Metabolic engineering of Escherichia coli for direct production of 1, 4-butanediol. Nat Chem Biol 7: 445-452. doi: 10.1038/nchembio.580 |
[33] | Qian ZG, Xia XX, Lee SY (2011) Metabolic engineering of Escherichia coli for the production of cadaverine: a five carbon diamine. Biotechnol Bioeng 108: 93-103. doi: 10.1002/bit.22918 |
[34] | Moon TS, Dueber JE, Shiue E, et al. (2010) Use of modular, synthetic scaffolds for improved production of glucaric acid in engineered E. coli. Metab Eng 12: 298-305. doi: 10.1016/j.ymben.2010.01.003 |
[35] | Dellomonaco C, Clomburg JM, Miller EN, et al. (2011) Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals. Nature 476: 355-359. doi: 10.1038/nature10333 |
[36] | McKenna R, Nielsen DR (2011) Styrene biosynthesis from glucose by engineered E. coli. Metab Eng 13: 544-554. doi: 10.1016/j.ymben.2011.06.005 |
[37] | Xiong M, Schneiderman DK, Bates FS, et al. (2014) Scalable production of mechanically tunable block polymers from sugar. Proc Natl Acad Sci U S A 111: 8357-8362. doi: 10.1073/pnas.1404596111 |
[38] | Datta R, Henry M (2006) Lactic acid: recent advances in products, processes and technologies a review. J Chem Technol Biotechnol 81: 1119-1129. doi: 10.1002/jctb.1486 |
[39] | Lin H, Bennett GN, San KY (2005) Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield. Metab Eng 7: 116-127. doi: 10.1016/j.ymben.2004.10.003 |