Research article Special Issues

Quantum option pricing and data analysis

  • Received: 24 May 2019 Accepted: 17 July 2019 Published: 01 August 2019
  • JEL Codes: C02, C10, C53, G12

  • The paper proposes to treat financial models using techniques of quantum mechanics. The methodology relies on the Dirac matrix formalism and the Feynman path integral approach. This leads us to reexamine in this framework the classical option pricing models of Cox-Ross-Rubinstein and Black-Scholes. Moreover, financial data are classified with respect to the spectrum of a certain observable and then analyzed to identify price jumps using supervised machine learning tools.

    Citation: Wenyan Hao, Claude Lefèvre, Muhsin Tamturk, Sergey Utev. Quantum option pricing and data analysis[J]. Quantitative Finance and Economics, 2019, 3(3): 490-507. doi: 10.3934/QFE.2019.3.490

    Related Papers:

  • The paper proposes to treat financial models using techniques of quantum mechanics. The methodology relies on the Dirac matrix formalism and the Feynman path integral approach. This leads us to reexamine in this framework the classical option pricing models of Cox-Ross-Rubinstein and Black-Scholes. Moreover, financial data are classified with respect to the spectrum of a certain observable and then analyzed to identify price jumps using supervised machine learning tools.


    加载中


    [1] Baaquie BE (2004) Quantum Finance, Cambridge University Press, Cambridge.
    [2] Baaquie BE (2009) Interest Rates and Coupon Bonds in Qantum Finance, Cambridge University Press, Cambridge.
    [3] Baaquie BE (2014) Path Integrals and Hamiltonians: Principles and Methods, Cambridge University Press, Cambridge.
    [4] Benninga S, Mayshar J (2000) Heterogeneity and option pricing. Rev Deriv Res 4: 7-27. doi: 10.1023/A:1009639211414
    [5] Bishop CM (2006) Pattern Recognition and Machine Learning, Springer, Berlin.
    [6] Black F, Scholes M (1973) The pricing of options and corporate liabilities. J Polit Econ 8: 637-654.
    [7] Bouchaud JP, Potters M (2003) Theory of Financial Risk and Derivative Pricing: From Statistical Physics to Risk Management, 2nd edition, Cambridge University Press, Cambridge.
    [8] Boyle PP (1986) Option valuation using a three-jump process. Int Options J 3: 7-12.
    [9] Chen Z (2001) A non-commutative version of the fundamental theorem of asset pricing. Available from: http://arxiv.org/abs/quant-ph/0112159.
    [10] Chen Z (2004) Quantum theory for the binomial model in finance theory. JSSC. Available from: arXiv preprint quant-ph/0112156.
    [11] Claessens S, Kose MA, Laeven L, et al. (2014)Financial Crises: Causes, Consequences, and Policy Responses, International Monetary Fund, Washington D.C.
    [12] Contreras M, Pellicer R, Villena M, et al. (2010) A quantum model of option pricing: When Black-Scholes meets Schrödinger and its semi-classical limit. Phys A 389: 5447-5459. doi: 10.1016/j.physa.2010.08.018
    [13] Cox JC, Ross SA, Rubinstein M (1979) Option pricing: A simplified approach. J Financ Econ 7: 229-263. doi: 10.1016/0304-405X(79)90015-1
    [14] Feynman RP, Hibbs AR (2010) Quantum Mechanics and Path Integrals, Dover Editions, New York.
    [15] Griffiths DJ, Schroeter DF (2018) Introduction to Quantum Mechanics, 3rd edition, Cambridge University Press, Cambridge.
    [16] Hastie T, Tibshirani R, Friedman J (2009) The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edition, Springer, New York.
    [17] Haven EE (2002) A discussion on embedding the Black-Scholes option pricing model in a quantum physics setting. Phys A 304: 507-524. doi: 10.1016/S0378-4371(01)00568-4
    [18] Herscovich E (2016) Noncommutative valuation of options. Rep Math Phys 78: 371-386. doi: 10.1016/S0034-4877(17)30015-0
    [19] Karadeniz RS, Utev S (2015) Modelling share prices via the random walk on the lamplighter group. Math Methods Econ Financ 9: 65-84.
    [20] Karadeniz RS, Utev S (2018) Embedding problem for financial data. IIB Int Refereed Acad Soc Sci J 29: 1-18.
    [21] Lefèvre C, Loisel S, Tamturk M, et al. (2018) A quantum-type approach to non-life insurance risk modelling. Risks 6: 1-17. doi: 10.3390/risks6010001
    [22] Leisen DPJ, Reimer M (1996) Binomial models for option valuation-examining and improving convergence. Appl Math Financ 3: 319-346. doi: 10.1080/13504869600000015
    [23] Ma GX, Utev S (2012) Modelling the share prices as a hidden random walk on the lamplighter group, In Mathematical and Statistical Methods for Actuarial Sciences and Finance, Springer, 263-270.
    [24] Mantegna RN, Stanley HE (2000) An Introduction to Econophysics: Correlations and Complexity in Finance, Cambridge University Press, Cambridge.
    [25] Mudakkar SR, Utev S (2013) On stochastic dominance of nilpotent operators, Infinite Dimens Anal Quantum Probab Relat Top, 16: 1350009.
    [26] Parthasarathy KR (2012) An Introduction to Quantum Stochastic Calculus, Birkhäuser, Basel.
    [27] Plenio M (2002) Quantum Mechanics, Ebook, Imperial College, London.
    [28] Tamturk M, Utev S (2018) Ruin probability via quantum mechanics approach. Insur Math Econ 79: 69-74. doi: 10.1016/j.insmatheco.2017.12.009
    [29] Tamturk M, Utev S (2019) Optimal reinsurance via Dirac-Feynman approach. Methodol Comput Appl 21: 647-659. doi: 10.1007/s11009-018-9674-8
    [30] Tian Y (1993) A modified lattice approach to option pricing. J Futures Markets 13: 563-577. doi: 10.1002/fut.3990130509
    [31] Wittek P (2014) Quantum Machine Learning: What Quantum Computing Means to Data Mining, Academic Press, New York.
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5217) PDF downloads(1111) Cited by(7)

Article outline

Figures and Tables

Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog