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1. Introduction

As pointed out in Claessens et al. (2014), global financial crises underline the importance of
innovative modelling approaches to financial markets. The quantum mechanics approach suggests an
alternative way to describe the unpredictable stock market behaviour (see e.g., Baaquie (2009)).

This paper is motivated by the quantum mechanics approach to the actuarial modelling and risk
analysis as initiated in Tamturk and Utev (2018) and developed in Lefèvre et al. (2018), Tamturk and
Utev (2019). We modify and adapt their methods to derive and analyze a quantum-type financial
modelling. Specifically, the Schrödinger, Heisenberg, Feynman, Dirac approaches in quantum
mechanics (see, e.g., Griffiths and Schroeter (2018); Parthasarathy (2012); Plenio (2002)) will be
applied to the well-known option pricing models of Black and Scholes (1973) and Cox et al. (1979).

Moreover, motivated by the data analysis of the quantum reserve process proposed in Lefèvre et al.
(2018), we model the financial data as eigenvalues of certain 1 or 2-step observable operators. These

data then are analyzed to identify price jumps using supervised machine learning tools such as k-fold
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cross-validation techniques (see, e.g., Bishop (2006); Hastie et al. (2009); Wittek (2014)).
Option pricing models using quantum techniques discussed, for example, in Baaquie (2004, 2014);

Bouchaud and Potters (2003); Haven (2002) are often based on the Schrödinger wave function with
Hamiltonian operator H and are mainly oriented to continuous-time markets. For discrete-time markets
as considered here, following Chen (2001, 2004), we choose the discrete-time formalism and analyze
the quantum version of the Cox-Ross-Rubinstein binomial model. Then, we establish the limit of
the spectral measures providing the convergence to the geometric Brownian motion model. We also
identify the limit of the N-step non-self adjoint bond market as a planar Brownian motion.

The paper is organized as follows. Section 2 deals with heterogeneous quantum binomial markets.
In Section 3, two convergence properties to continuous-time quantum markets are obtained. In Section
4, discrete and continuous-time quantum mechanics techniques are applied to the problem of option
pricing. Section 5 is devoted to an analysis of stock market data.

2. Quantum modelling in finance

The motivation to our models come from the quantum mechanics approach to insurance proposed
in Tamturk and Utev (2018, 2019), the insurance claim data analysis via quantum tools introduced in
Lefèvre et al. (2018) and the non-traditional financial modelling initiated in Ma and Utev (2012) and
developed in Karadeniz and Utev (2015, 2018). The quantum modelling approach is partly inspired
by Baaquie (2004); Chen (2001, 2004), and Parthasarathy (2012).

2.1. Share price operators

We begin by outlining some standard arguments for a quantum-type modelling (see e.g., Lefèvre
et al. (2018); Parthasarathy (2012)). An observable is a linear operator (matrix) on a certain Hilbert
space. The quantum product of two independent observables A, B is implemented by the tensor product
of the observables A ⊗ B. So, ln(A ⊗ B) acts as a quantum sum of two independent observables; in
particular, A ⊗ A is the quantum product of two independent identical observables.

The 1-step quantum geometric random walk is defined as a 2 × 2 matrix A with eigenvalues eu, ed.
Thus, A⊗N (N ≥ 0) models the N-step geometric random walk.

2.1.1. Quantum binomial model

The quantum type modification of the classical Cox-Ross-Rubinstein model is originated in Chen
(2001, 2004). The dynamics per period is defined by two moves: eu (the share price goes up) and ed

(the share price goes down) with d < 0 < u.
The quantum binomial model over N periods is then represented by the share price operator

HS N = S 0H⊗N , (1)

where the main 1-step observable H = A is a 2 × 2 self-adjoint (hermitian) matrix with eigenvalues
eu, ed and representation

A = U∗DU = U∗
(

eu 0
0 ed

)
U, (2)

where U is a 2 × 2 unitary matrix.
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In the sequel, the quantum binomial model discussed will be heterogeneous with share price
operator

HS N = S 0H1 ⊗ . . . ⊗ HN . (3)

2.1.2. Quantum actuarial-type model

The motivation to this relatively new financial model comes from Lefèvre et al. (2018) quantum
mechanics approach to non-life insurance and the Lamplighter group approximation to the financial
modelling suggested in Ma and Utev (2012). Based on the approach to the financial data analysis
developed in Ma and Utev (2012); Karadeniz and Utev (2015, 2018) (see also references therein), we
treat the data as having big jumps, say eu, small jumps, say ed or no jump. Moreover, the financial stock
is observed at fixed times ∆k but the number of jumps occurred during the time period ((k − 1)∆, k∆]
is not observed. For simplicity and following Lefèvre et al. (2018), we then assume there are at most
two jumps per period.

In this circumstance, the main observable operator is given, similarly to the insurance case Lefèvre
et al. (2018), by

H3 = S 0

(
P0 ⊗ I4 + P1 ⊗ (A ⊗ I2) + P2 ⊗ (A⊗2)

)
, (4)

where In is a n×n identity matrix, A is the 2×2 matrix representing the 1-step geometric move operator
(2) with eigenvalues eu, ed, and P0, P1, P2 are 3 × 3 matrix projection operators corresponding to the
0, 1, 2 claim occurrence operators and defined by

Pi = W∗Di+1|3W, i = 0, 1, 2, (5)

where Di+1|3 is a 3 × 3 diagonal matrix which has all its elements equal to 0 except the (i + 1, i + 1)-th
with value 1, and W is a 3 × 3 unitary matrix.

The share price operator over N periods is then defined as

HS N = S 0H⊗N
3 = S 0

(
P0 ⊗ I4 + P1 ⊗ (A ⊗ I2) + P2 ⊗ (A⊗2)

)⊗N
. (6)

Furthermore, when constructing the density operator, we consider the following two cases.
Maxwell-Boltzmann statistics. In this case, the jump sizes are i.i.d. with a two-point distribution.

More precisely, there are 0, 1, 2 jumps with probabilities δ0, δ1, δ2 given via a Poisson process, and each
jump size has two possible values ed, eu with probabilities q, p (see also later in Section 4.1).

Bose-Einstein statistics. In this case, the claim sizes are dependent but remain independent of the
claim occurrences.

2.1.3. Quantum trinomial model

This model makes a bridge between the traditional binomial model and the actuarial type model. In
this case, the dynamics per period is defined by three moves: no change, down and up. The trinomial
type financial modelling is a well established topic in finance (see e.g., Boyle (1986); Tian (1993);
Leisen and Reimer (1996)).
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Now, the 1-step observable operator H2 = B is the 3×3 self-adjoint matrix with eigenvalues eu, 1, ed

corresponding to these three moves and is given by

H2 = B = U∗DU = U∗


eu 0 0
0 1 0
0 0 ed

 U, (7)

where U is now a 3 × 3 unitary matrix.
Then, the share price operator over N periods is defined by

HS N = S 0H⊗N
2 = S 0(U∗)⊗N D⊗NU⊗N . (8)

Remarks. Notice that the heterogeneous versions of the trinomial model and the actuarial type model
are available with the representation similar to (3). However, they are not treated in this paper because
the main purpose for considering these two models is the non-standard data analysis (to be presented
in Section 5). Although the data analysis of time dependent models is a fascinating topic, it is out of
the scope of this paper.

2.2. Quantum binomial price

As mentioned in above, the quantum binomial model (1) is originated in Chen (2001, 2004). Our
presentation is somewhat different and based on the algebraic tensor product properties. In addition,
since heterogeneity is an important topic in option pricing (see e.g., Benninga and Mayshar (2000)),
we treat a slightly more general time dependent or heterogeneous quantum binomial model (3).

A quantum state ρ is defined as a positive self-adjoint operator with trace tr(ρ) = 1. We recall the
following properties.

Lemma 2.1. Let A, B,C,D be self-adjoint operators, U a unitary matrix, f a function of observables
and ρ a quantum state. Then,

tr(ABC) = tr(CAB), tr(A ⊗ B) = tr(A)tr(B) ,
(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD), (A ⊗ B)∗ = A∗ ⊗ B∗,

A, B ≥ 0→ A ⊗ B ≥ 0, A = U∗DU → f (A) = U∗ f (D)U,
UρU∗ = quantum state. (9)

For simplicity, we choose a quantum state ρ as a tensor product, i.e.

ρ = ρ1 ⊗ . . . ⊗ ρN , (10)

where each ρi is a self-adjoint non-negative 2× 2 matrix such that tr(ρi) = 1. From Lemma 2.1, we see
that ρ is a proper quantum state.

The risk-neutral world of the quantum Black-Scholes model consists of self-adjoint non-negative
2 × 2 matrices ρi that satisfy

tr(ρiHi) = 1 + ri, i = 1, . . . ,N, (11)

where ri is the risk-free interest rate for the period i.
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Let us define
Hi = U∗i DiUi, and let ρ̃i = UiρiU∗i , i = 1, . . . ,N. (12)

Note that the ρ̃i are also quantum states. In addition, ρ̃i has non-negative diagonal elements q(i)
u , q

(i)
d and

it can be shown to have the representation

ρ̃i =

(
qui x
x̄ qdi

)
, (13)

where
qui =

1 + ri − di

ui − di
, qdi = 1 − qui . (14)

The transformed operator ρ̃ is then obtained from Lemma 2.1 (third property) as

ρ̃ = U(ρ1 ⊗ ... ⊗ ρN)U∗ = (U1 ⊗ . . . ⊗ UN)(ρ1 ⊗ ... ⊗ ρN)(U∗1 ⊗ . . . ⊗ U∗N)
= (U1ρ1U∗1) ⊗ . . . ⊗ (UNρNU∗N) = ρ̃1 ⊗ . . . ⊗ ρ̃N , (15)

after using (12), and ρ̃ is again a quantum state. For the classical probability case, that is when all
matrices are commutative, this transform is the form of the change of measure.

Moreover, the quantum no arbitrage condition (11) is satisfied for the transformed density, i.e.

tr(ρ̃iDi) = 1 + ri, i = 1, . . . ,N. (16)

2.3. Quantum binomial option pricing

Consider a payoff function f and a discount factor

dN = 1/(1 + r1) . . . (1 + rN). (17)

From (3), the price of the general option without arbitrage OP( f (HS N )) for the N-step quantum
binomial model is then defined by

OP( f (HS N )) = dN tr(ρ f (HS N )) = dN tr(ρ1 ⊗ ... ⊗ ρN f (S 0H1 ⊗ ... ⊗ HN)). (18)

Applying properties given in Lemma 2.1, we then obtain

OP( f (HS N )) =
tr(ρ1 ⊗ ... ⊗ ρN f (S 0H1 ⊗ ... ⊗ HN))

(1 + r1) . . . (1 + rN)

=
tr(ρ1 ⊗ ... ⊗ ρNU∗ f (S 0D1 ⊗ ... ⊗ DN)U)

(1 + r1) . . . (1 + rN)

=
tr([U(ρ1 ⊗ ... ⊗ ρN)U∗] f (S 0D1 ⊗ ... ⊗ DN))

(1 + r1) . . . (1 + rN)

=
tr(ρ̃1 ⊗ . . . ⊗ ρ̃N f (S 0D1 ⊗ ... ⊗ DN))

(1 + r1) . . . (1 + rN)
, (19)

after using (15). Since ρ̃ is a tensor product and f (S 0D1 ⊗ ...⊗DN) is a diagonal matrix, we deduce the
option pricing formula (20) below.
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Theorem 2.2. For the heterogeneous quantum binomial model,

OP( f (HS N )) =

∑
σ

f (S 0yσ)qσ

(1 + r1) . . . (1 + rN)
, (20)

where the index σ denotes any feasible path yσ of the form

yσ = eσ1 . . . eσN with σi ∈ {ui, di}, (21)

which occurs with the probability qσ = qσ1 . . . qσN where qσi ∈ {qui , qdi}.
In particular, for the homogeneous case (the quantum Cox-Ross-Rubinstein model) where for all i,

ri = r, ui = u, di = d with qui = qu, qdi = qd, the formula (20) reduces to

OP( f (HS N )) =
1

(1 + r)N

N∑
n=0

f (S 0euned(N−n))qn
dqN−n

u . (22)

Non-self adjoint quantum binomial market. Assume that Hi are invertible 2 × 2 matrices with
two different eigenvalues ed and eu but no more self-adjoint, in general. In this case the transformed
density ρ̃i are no more proper states, in general. However, they still have same diagonal elements qui

and qdi and so the transformed matrix ρ̃ defined in (15) again has same diagonal elements as in the
self-adjoint case, but is not a proper state, in general. By inspecting the proof, we see that Theorem 2.2
holds true in this case as well.

3. Convergence to continuous-time markets

In this section, we consider the homogeneous quantum binomial model, and we discuss two
examples on the convergence to continuous-time markets, namely the Black-Scholes model and the
planar Brownian motion.

3.1. Convergence to the Black-Scholes model

Theorem 3.1. Let µN be the measure of the eigenvalues of H⊗N with respect to the quantum state ρ⊗N .
Suppose that r = λ/N and u = −d = σN−1/2. Then, as N → ∞,∫

f (S 0x)dµN(x)→
∫

f (S 0x)dµ(x), (23)

where µ is a lognormal distribution (i.e. µ(x) = P(ea+σZ ≤ x) for suitable constants a, σ and Z a
standard normal variable).

Proof. We begin with the representation via the spectral measure µN . Observe that

E f (HS N ) = tr(ρ⊗N f (S 0H⊗N)) =

∫
f (S 0x)µN(dx), (24)

where µN is the measure of the eigenvalues λσ of H⊗N with respect to the quantum probability
tr(ρ⊗N H⊗N). Since λσ = eσ1 . . . eσN with σi ∈ {ui, di}, we get

µN(x) =
∑
σ:λσ≤x

qσ =
∑

σ:eσ1 ...eσN≤x

qσ1 . . . qσN , (25)
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where qσi ∈ {qu, qd} respectively.
Let us move on to the weak convergence desired. We can write that

qσ1 . . . qσN = P(Y1 = eσ1) . . . P(YN = eσN ) = P(Y1 = eσ1 , . . . ,YN = eσN ), (26)

where the Yi are i.i.d. variables with P(Yi = eu) = qu, P(Yi = ed) = qd. Thus,

µN(x) = P(Y1 . . . YN ≤ x) = P(ln Y1 + . . . + ln YN ≤ ln x) = P(TN ≤ ln x), (27)

with TN ≡ ln Y1 + . . . + ln YN . As N → ∞, we obtain from the central limit theorem that

µN(x) = P(TN ≤ ln x)→ P(ea+σZ ≤ x) = µ(x), (28)

for certain constants a, b and Z a standard normal. This gives the limit result (23). �

Remarks. (i) The limiting measure µ corresponds to that of the geometric Brownian motion S t =

S 0e(ρ−σ2/2)t+σBt when S 0 = 1, t = 1 and ρ − σ2/2 = a.
(ii) It would be interesting to compare the technique with the semi-classical approximation, such as

expanding the action around the classical path (see (48) in Contreras et al. (2010)). Another interesting
question is to analyse connection with arbitrage as discussed in Haven (2002) and Contreras et al.
(2010).

(iii) The Cauchy transform is an alternative approach to deal with quantum probabilities (see
Mudakkar and Utev (2013)). In particular, the convergence of spectral measures is reduced to the
convergence of the Cauchy transforms. We recall that the Cauchy transform for the measure µ is
defined by

S µ(z) =

∫
R

µ(dt)
t − z

, where µ((a, b)) = lim
ε→0

1
π

∫ b

a
=S µ(x + iε)dx, (29)

for all z ∈ C\R = {z ∈ C : =z , 0} and open intervals (a, b) with µ({a, b}) = 0. The goal is then to show
that S µn(z) → S µ(z). However, the common approach of the moment expansion does not work in this
case since ∫

dµ(x)
z − x

=

∞∑
k=0

1
zk+1

∫
xkdµ(x) =

∞∑
k=0

1
zk+1 E(ek(a+σZ)) =

∞∑
k=0

1
zk+1 eka+k2σ2/2 = ∞. (30)

3.2. Convergence to the planar Brownian motion

In this part, by treating the relatively simple bond market, we show that non-commutative markets
provide a richer class of financial models (see also Haven (2002); Contreras et al. (2010); Herscovich
(2016)).

Bond market. Assume that returns are non-risky, that is the outcomes are equal. In the quantum
setup, we suppose that matrix H has a single eigenvalue, eu say.

Self-adjoint quantum bond market. Let ρ⊗N denote a quantum state defined as before. Assume that
in addition operator H is self-adjoint. Then H = euI2 and

HS N = S 0H⊗N = S 0euN I⊗N
2 and f (HS N ) = f (S 0euN)I⊗N

2 . (31)
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In particular, any option claim f (HS N ) is commutative with the state ρ⊗N which implies that the self-
adjoint quantum bond market is commutative, that is equivalent to the simple classical probability
financial market with two non-risky assets. The no-arbitrage condition becomes global to give eu =

tr(ρH) = 1 + r since tr(ρ) = 1 which restates that under no-arbitrage the non-risky returns are equal.
Moreover, the option price for f (HS N ) is provided by

OP( f (HS N )) =
tr(ρ⊗N f (S 0H⊗N))

(1 + r)N = e−uN f (S 0euN). (32)

Non self-adjoint quantum bond market. Now, assume that H is no longer self-adjoint, for example a
product of two noncommutative self adjoint observables. Thus, non self-adjoint quantum bond market
is noncommutative, in general. In this case, we show that the limit is sensitive to the density state ρ
and the representation of H. For simplicity, we assume that the basic observable H and the state ρ are
defined by

Hu =


eu 1 0
0 eu 1
0 0 eu

 , ρ =


ρ11 y δ

y ρ22 0
δ 0 ρ33

 , (33)

i.e., Hu is now a 3 × 3 Jordan matrix. The bond price process is then defined by

HS N = S 0H⊗N
u . (34)

To satisfy the no-arbitrage condition, we ask that

tr(ρHu) = 1 + r, thus y = 1 + r − eu. (35)

Theorem 3.2. Suppose that r = λ/N, u = a/N and δ = −∆/N with ∆ ≥ 0. Then, for any positive
integer k, as N → ∞,

OP([HS N ]k)→ e−λ S k
0E[ek(λ+∆/2+iB∆)], (36)

regardless of a, where i is the imaginary unit and B∆ is a Brownian motion at time ∆.

Proof. Notice that

Hk
u =


eku e(k−1)uk e(k−2)uk(k − 1)/2
0 eku e(k−1)uk
0 0 eku

 . (37)

From the definition of HS N and ρ, we then get

OP([HS N ]k) = OP([S 0(H⊗N)]k) = (1 + r)−N tr(ρ⊗N[S 0(H⊗N)]k)
= (1 + r)−N tr(S k

0ρ
⊗N[(Hk)⊗N]) = S k

0(1 + r)−N tr([ρHk]⊗N)
= S k

0(1 + r)−N(ρ11euk + ρ22euk + ρ33euk + yeu(k−1)k + δe(k−2)uk(k − 1)/2)N

= S k
0(1 + r)−N(euk + yeu(k−1)k + δe(k−2)uk(k − 1)/2)N

= S k
0(1 + r)−N[1 + ak/N + (λ − a)k/N − ∆k(k − 1)/2N + O(1/N2)]N

→ S k
0e−λ e(λ+∆/2)k−k2∆/2 (38)
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after using the assumptions made on r, u, δ. This provides the limit result (36). �

Remarks. (i) This representation is useful in computing the European call option OP([HS N − K)+])
via the Fourier techniques combined with the Monte Carlo approximation. For the distribution of this
process, we view R2 as the complex plane and the planar Brownian motion B̃t = (B1(t), B2(t)) is then
interpreted as a complex-valued Brownian motion.

(ii) Although observables are traditionally considered to be self-adjoint, the non self-adjoint data is
modelled by considering an observable such as H = AB, i.e. the product of two self-adjoint matrices
A, B where A and B may represent the non-trade and trade time changes, respectively.

(iii) Similarly to the convergence to the Black-Scholes model, the limit does not depend on the shift
parameter a. However, now the limit depends on the mysterious characteristic ∆.

4. Quantum mechanics in finance

In this section, we will apply some methods of quantum mechanics to finance. Discrete and
continuous-time markets must be treated separately because of different stochastic behaviors. To
simplify the presentation, we assume that the interest rate is 0 and that the risky processes for share
prices are martingales.

4.1. Discrete-time quantum approach

The use of Dirac-Feynman quantum mechanics techniques for insurance risk modelling was
initiated in Tamturk and Utev (2018) and then developed in Lefèvre et al. (2018); Tamturk and Utev
(2019). We adapt this approach to the problem of option pricing in finance, in particular for the
pricing of path-dependent options.

In the Dirac formalism, bra-ket notation is a standard way of describing quantum states. Consider a
class of n × n matrices treated as C∗ algebra. A column vector x corresponds to a ket-vector |x >. An
associated bra-vector < x| is a row vector defined as its Hermitian conjugate. The usual inner product
is denoted by < x|y >, while the outer product |x >< y| is the operator/matrix defined by

|x >< y||z >=< y|z > |x > (abc = bca rule). (39)

In the Feynman path integral methods, the transition probability P(x j → x j+1) is computed as the
propagator < x j|A j+1|x j+1 > when A j is a Markovian operator. Thus, the typical path is written as
|x0 >→ |x1 >→ . . .→ |xn >, and its probability is given by

P(|x0 >→ |x1 >→ |x2 → . . .→ |xn >) =< x0|A1|x1 >< x1|A2|x2 > . . . < xn−1|An|xn > . (40)

The main ingredient is then the path calculation formula that calculates the probability P(x0 → xn) via
the sum of the probabilities on all the appropriate paths, i.e.

P(x0 → xn) = < x0|A1A2 . . . An|xn >

=
∑

x1,...,xn−1

< x0|A1|x1 >< x1|A2|x2 > . . . < xn−1|An|xn > . (41)

It remains to define a suitable propagator for discrete time. For simplicity, we take the operators
A j all equal to A and the time intervals ∆ti all equal to ∆t. In a similar way to e.g. Baaquie (2004);
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Tamturk and Utev (2018), we assume that the operator A is defined via an Hamiltonian operator H
such as A = e−∆t H, where −H is a Markovian generator called Markovian Hamiltonian. Thus, P(xi →

xi+1) =< xi|e−∆t H |xi+1 > which can be computed applying the Fourier transform to the momentum
space (e.g., Griffiths and Schroeter (2018); Tamturk and Utev (2018)). Specifically, let |p > be a basis
in that space, and write < x|p >= eipx and < p|x >= e−ipx. Then, we get

< xi|e−∆t H |xi+1 > =

∫ 2π

0

dα
2π

< xi|e−∆t H |α >< α|xi+1 >

=

∫ 2π

0

dα
2π

< xi|α >< α|xi+1 > e−∆t Kα

=
1

2π

∫ 2π

0
(eixiαe−ixi+1α)e−∆t Kαdα, (42)

where {|α >,Kα} is the set of eigenvectors and eigenvalues of the Hamiltonian operator H (i.e., H|α >=

Kα|α >). Therefore, we deduce from (41), (42) that

P(x0 → xn) =
∑

x1,...,xn−1

< x0|e−∆t H |x1 >< x1|e−∆t H |x2 > . . . < xn−1|e−∆t H |xn >

=
∑

x1,...,xn−1

1
(2π)n

2π∫
0

2π∫
0

. . .

2π∫
0

[
n−1∏
i=0

(eixiαie−ixi+1αi)e−∆t Kαi ] dα0dα1 . . . dαn−1. (43)

For a more detailed overview of the theory, we refer the reader to the books by Feynman and Hibbs
(2010); Griffiths and Schroeter (2018); Parthasarathy (2012) and Plenio (2002).

Option pricing formula. Consider a claim of the form C = f (S 0, S 1, ..., S N), using the notation of
Section 2. From (43), we obtain for the corresponding option price

OP(C) = dN

∑
S 0,S 1,...,S N

f (S 0, S 1, ..., S N) < S 0|A1|S 1 > . . . < S N−1|AN |S N > . (44)

The discrete-time approach followed to derive (43) can then be easily applied to the current formula
(44).

A modified Cox-Ross-Rubinstein model. Consider a discrete-time market in which, during each i-th
time interval ∆t, the share price S i can

(.) have 1 jump giving S i+1 = S ieu, S ied with probabilities p, q = 1 − p, or
(.) have 2 jumps giving S i+1 = S ieu+d, S ie2u, S ie2d with probabilities 2pq, p2, q2, or
(.) remain the same giving S i+1 = S i,

where d, u are integers with d < 0 < u. Furthermore, the possible jumps arrive according to a Poisson
process of parameter λ so that

(.) δ1 ≡ P[N(∆t) = 1] = e−λ∆t(λ∆t),
(.) δ2 ≡ P[N(∆t) = 2] = e−λ∆t(λ∆t)2/2,
(.) δ0 ≡ P[N(∆t) = 0] ≈ 1 − δ1 − δ2.

Define xi = ln(S i). The transition probabilities P(S i → S i+1) are equivalent to P(xi → xi+1). Set
∆t = 1, say. We can now apply (42) with A = e−H where the set {|α >,Kα} is found by solving the
Schrödinger equation e−H |α >= e−Kα |α > in which

e−H |α > (x) = Ex(eiαxi+1) = eiαx(δ0 + eiαu pδ1 + eiαdqδ1 + eiα2u p2δ2 + eiαx2dq2δ2 + eiα(u+d)2pqδ2). (45)
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Notice that the Hamiltonian H is not Markovian, but (42) is still applicable to the discrete times k∆t.
Moreover, by construction, the martingale probabilities p = qu and q = qd for the Cox-Ross-Rubinstein
model (without interest) yield a martingale in the present situation too since we have

E(S i+1|S i) = S i[δ0 + δ1(queu + qded) + δ2(e2uq2
u + e2dq2

d + eq+d2quqd)]
= S i(δ0 + δ1 + δ2) = S i. (46)

We have illustrated numerically the option pricing results obtained for the model. The tables and
figures are however too large to be included here.

4.2. Continuous-time quantum approach

This short part is mostly a review of the application of quantum mechanics approach to the
continuous time markets and closely follows Baaquie (2004).

The continuous time formalism is based on the Fourier transform of tempered distributions on the
basis |p > in the momentum space. Consider a risky asset price S t that evolves in function of an
Hamiltonian operator H. First, the method is applied to compute the pricing kernel

p(x, τ; x′) =< x|e−τH |x′ >=

∫ ∞

−∞

dp
2π

< x|e−τH |p >< p|x′ > . (47)

Then, the option price at time t for the claim Q ≡ Q(S T ), T > t, given S t = x is defined by

OP(Q(S T )|S t = x) =< x|e−(T−t)H |Q > . (48)

Black-Scholes model. In this classical approach, the stock price S t follows a geometric Brownian
motion, i.e. S t = S 0eB̃t where B̃t = µt + σBt (µ is the drift, σ the volatility and Bt a standard Brownian
motion).

We apply the quantum mechanics approach. Motivated by Baaquie (2004), we work with B̃t rather
than with S t. The corresponding Hamiltonian for the Brownian motion is H f = −(1/2) f ′′ − µ f ′

(computed, for example, via the Itô formula). The Brownian motion kernel is then defined from (47)
by the normal density function

p(u, τ; u′) = fN(τµ,τσ2)(u′ − u) =
1

√
2πτσ2

exp[−(1/2τσ2)(u′ − u − τµ)2]. (49)

To obtain the option price (48), we set x = S 0eu and Q(x) = Q(S 0eu) ≡ g(u). Then, the Feynman-Kac
formula yields

OP(Q(S T )|S t = x) =< u|e−(T−t)H |g > =

∫ ∞

−∞

< u|e−(T−t)H |u′ > g(u′)du′

=

∫ ∞

−∞

p(u,T − t; u′)Q(S 0eu′)du′. (50)

Via path integrals. To find the pricing kernel p(x, τ; x′) =< x|e−τH |x′ > for τ = T − t, an alternative
method consist in using path integral methods. For this, we discretize the time in N intervals of length
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∆ and consider the xi = x(ti) where ti = i∆. We then proceed as in the situation in discrete-time. The
pricing kernel for (x, x′) = (x0, xN) becomes

p(x,N∆; x′) =

∫ ∫
. . .

∫
dx1dx2 . . . dxN−1

N∏
i=1

< xi−1|e−∆H |xi > . (51)

Applications to non-life insurance. Consider Feynman’s modification H̃ of the Brownian motion
Hamiltonian H by adding the potential V , i.e. for the Hamiltonian H̃ = H + V . For example, choose a
ruin level B and take V(x) = +∞ for x < B. Then, the path calculation formula (43) allows us to
compute ruin probabilities when B = 0 (Tamturk and Utev (2018, 2019)) and exotic options with
barriers when B > 0.

Finally, let us mention that numerically, the binomial model formula (20) and the path integral
approach (51) were found to give results close to the Black-Scholes formula, even for relatively small
values of N (of order 40).

5. Analysis of stock market data

We are going to analyse a generated set of financial data by choosing two different quantum models
described in Section 2.1. First, we consider the quantum actuarial-type model (see Section 2.1.3 and
in 4.1) with the N-step observable defined in (6). Then, we consider the quantum trinomial model (see
Section 2.1.2) with the N-step observable defined in (8). Note that matching 1-step for the actuarial
case to two steps for the trinomial model is natural, since in the actuarial case, we choose at most two
jumps.

5.1. Methodology for data analysis

We apply supervised machine learning methods such as developed e.g. in the books by Bishop
(2006); Hastie et al. (2009) and Wittek (2014).

Overall approach. The dataset is supposed to come from a non-ordered class of randomly perturbed
observables. Each data is the observation of an eigenvalue λ of the observable perturbed by i.i.d. error
terms. The observable is the 1-step operator for the actuarial-type model and the 2-step oparator for the
trinomial model. Matching 1-step in the actuarial case to 2-step in the trinomial case is natural since
there are at most two jumps in the actuarial case considered.

First, the data are classified in classes Gλ with respect to the eigenvalues λ. Then, the probabilities pλ
are estimated by maximum likelihood using Maxwell-Boltzmann or Bose-Einstein statistics. Finally,
the λ are estimated via the weighted L1-norm risk error function.

Let us explain in more detail for the actuarial-type model, for example.
Step 1. An initial (u = u0, u = d0) is chosen randomly.
Step 2. For a given (u, d), the data is classified and labeled against the eigenvalues of the

observable using a nearest neighbor algorithm. This leads to the classes Gλ.
Step 3. For the same (u, d), the estimates p̂ and q̂ are obtained by maximizing the likelihood

function L(p, q).
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Step 4. The (u, d) is updated by minimizing a weighted L1-norm risk error function F(u, d) ≡
F(λ) defined by

F(λ) = ‖β − λ‖ =
∑
λ

pλ
∑
βi∈Gλ

|βi − λ|. (52)

Step 5. The loop of steps 2 to 4 is repeated until the relative error becomes smaller than a selected
difference M, i.e. when

|F(ui+1, di+1) − F(ui, di)| < M. (53)

k−fold cross-validation. To reduce the risk of error, we use a k−fold cross-validation strategy. The
dataset is randomly divided into k subsets of equal size. One of the subsets is chosen as the training set
and the others as test sets. The process is repeated k times, each subset constituting a training element.
At each iteration, steps 1 to 5 above are applied to the training data and the results obtained are then
checked in the test data. Finally, the estimates used are an average of those obtained on the k iterations.

Numerical example. As a simple illustration, we will consider the following dataset

V = {86, 63, 35, 52, 41, 8, 24, 12, 19, 24, 42, 5, 91, 95, 50, 49, 34, 91, 37, 11}. (54)

5.2. Data analysis via the actuarial-type model

From the assumptions of the model, the 1-step observable H has the eigenvalues

{λ} = {1, ed, eu, ed+u, e2d, e2u}, (55)

with probabilities respectively given by

{pλ} = {δ0, qδ1, pδ1, pd+uδ2, p2dδ2, p2uδ2}. (56)

For the probabilities pd+u, q2d, p2u, we consider two possible statistics often used in the analysis of
quantum observables.

Maxwell-Boltzmann independence. This case yields the binomial model since

pd+u = 2pq, p2d = q2, p2u = p2. (57)

Bose-Einstein dependence. In this case, corresponds to probabilities

pd+u = Cpq, p2d = Cq2, p2u = Cp2, where C(pq + q2 + p2) = 1. (58)

As pointed out in Lefèvre et al. (2018), both statistics admit a formal construction, via the proper
choice of the density operator ρ for the number of occurrences and the density projection operators ρλ,
such that

tr(ρ ⊗ ρλ) = pλ. (59)

Likelihood functions. Denote by #x the number of x observed in the data set. For the Maxwell-
Boltzmann statistics, the likelihood is defined by the probabilities p, q, δ0,δ1 and δ2 such that

L(p, q) = L(p, q, δ0, δ1, δ2) = (δ0)#0(qδ1)#d(pδ1)#u(2pqδ2)#u+d(q2δ2)#2d(p2δ2)#2u. (60)

Quantitative Finance and Economics Volume 3, Issue 3, 490–507.



503

For the Bose-Einstein statistics, the likelihood function is modified as

L(p, q) = L(p, q, δ0, δ1, δ2) = (δ0)#0(qδ1)#d(pδ1)#u(Cpqδ2)#u+d(Cq2δ2)#2d(Cp2δ2)#2u. (61)

Risk functions. From (55), the scaled share price spectrum of HS 1 is given by
S 0{λ} = {S 0, S 0eu, S 0ed, S 0eu+d, S 0e2d, S 0e2u}. Thus, using the risk function (52), we get for the
Maxwell-Boltzmann case

F1(u, d) = δ0

∑
βi∈G0

|βi − S 0| + qδ1

∑
βi∈Gd

|βi − S 0ed|pδ1

∑
βi∈Gu

|βi − S 0eu|

+ 2pqδ2

∑
βi∈Gu+d

|βi − S 0eu+d| + q2δ2

∑
βi∈G2d

|βi − S 0e2d| + p2δ2

∑
βi∈G2u

|βi − S 0e2u|, (62)

and for the Bose-Einstein case,

F2(u, d) = δ0

∑
βi∈G0

|βi − S 0| + qδ1

∑
βi∈Gd

|βi − S 0ed| + pδ1

∑
βi∈Gu

|βi − S 0eu|

+ Cpqδ2

∑
βi∈Gu+d

|βi − S 0eu+d| + Cq2δ2

∑
βi∈G2d

|βi − S 0e2d| + Cp2δ2

∑
βi∈G2u

|βi − S 0e2u|. (63)

Numerical illustration. The data (54) is treated as the eigenvalues of the 1-step observable H defined

in (6) for N = 1. Let us assume that the Poisson process rate is 1 and the length of time is ∆t = 1.
We estimate the values d, u and the probabilities q, p by applying the algorithm of Section 5.1 and

using the Maxwell-Boltzmann statistics. Choose, for instance, S 0 = 70, (u0, d0) = (0.8,−0.1) and
M = 0.000001. The results obtained from (60), (62) are presented in Table 1.

Table 1. Estimation for N = 1 in the Maxwell-Boltzmann case.

Given
(u,d)

Maximum
likelihood

Optimum
(p,q)

Optimum
(u,d)

Risk error
F(u, d)

|F(ui, di)−
F(ui+1, di+1)|

(0.8,-0,1) 4.6063e-14 (0.01,0.99) (0.3,-0.4) 43.3107 43.3107
(0.3,-0.4) 2.2681e-18 (0.16,0.84) (0.3,-0.5) 22.8734 20.4373
(0.3,-0.5) 5.1730e-19 (0.23,0.77) (0.3,-0.6) 15.8654 7.0080
(0.3,-0.6) 1.7631e-18 (0.24,0.76) (0.3,-0.7) 14.4741 1.3913
(0.3,-0.7) 1.2479e-19 (0.29,0.71) (0.3,-0.7) 11.1976 3.2765
(0.3,-0.7) 1.2479e-19 (0.29,0.71) (0.3,-0.7) 11.1976 0

We then also apply a 4-foldcross-validation procedure. Let Vi, 1 ≤ i ≤ 4, before randomly chosen
subsets of V such that ∪4

i=1Vi = V . For each iteration, {V \ Vi} and Vi are treated as the training set
and the test set, respectively. First, the maximum likelihood estimation and the risk error computation
are executed for the training data. Then, the obtained estimates are implemented in the test data. This
gives the results of Table 2.
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Table 2. Using a 4-fold cross-validation strategy.

Training data Test data
Training & Test

data
Optimum

(u, d)
Risk error

F(u, d)
Optimum

(u, d)
Risk error

F(u, d)
Total risk error

function
{V \ V1},V1 (0.2,-0.4) 9.5462 (0.2,-0.5) 0.0842 9.6304
{V \ V2},V2 (0.2,-0.3) 11.1223 (0.2,-0.1) 0.1928 11.3151
{V \ V3},V3 (0.2,-0.3) 8.0269 (0.3,-0.4) 0.2042 8.2311
{V \ V4},V4 (0.2,-0.6) 9.2466 (0.4,-0.7) 0.0629 9.3095

We observe that the risk errors are small for the test data but are larger for the training data. Thus,
the total risk errors are significant. Similar numerical calculations have also been performed under the
Bose-Einstein assumption.

5.3. Data analysis via the trinomial model

The spectrum of H⊗N
2 is given by

{λ} = {e(N−i− j)u+id, 0 ≤ j ≤ N, 0 ≤ i ≤ N − j}. (64)

Thus, for the case N = 2, the set of observables is exactly the same as (55). However, the associated
probabilities differ from (56) and are equal to

{pλ} = {p2
2, 2p2 p3, 2p1 p2, 2p1 p3, p2

3, p2
1}. (65)

Likelihood and risk functions. Using the Maxwell-Boltzmann statistics, the likelihood is defined by
the probabilities p1, p2, p3 as

L(p1, p2, p3) = (p2
2)#0(2p2 p3)#d(2p1 p2)#u(2p1 p3)#d+u(p2

3)#2d(p2
1)#2u. (66)

Note that for the Cox-Ross-Rubinstein model, p2 = 0 so that the likelihood is simplified to L(p1, p3) =

(2p1 p3)#d+u(p2
3)#2d(p2

1)#2u.
The corresponding risk function is then defined by

F3(u, d) = p2
2

∑
βi∈G0

|βi − S 0| + 2p2 p3

∑
βi∈Gd

|βi − S 0ed| + 2p1 p2

∑
βi∈Gu

|βi − S 0eu|

+ 2p1 p3

∑
βi∈Gd+u

|βi − S 0eu+d| + p2
3

∑
βi∈G2d

|βi − S 0e2d| + p2
1

∑
βi∈G2u

|βi − S 0e2u|. (67)

Numerical illustration. We process the data (54) again with S 0 = 70, (u0, d0) = (0.8,−0.1) and
M = 0.000001. The results obtained using the algorithm of Section 5.1 with the functions (66), (67)
are given in Table 3.
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Table 3. Estimation for N = 2 in the Maxwell-Boltzmann case.

Given
(u,d)

Maximum
likelihood

Optimum
(p1, p2, p3)

Optimum
(u,d)

Risk error
F(u, d)

|F(ui, di)−
F(ui+1, di+1)|

(0.8,-0.1) 7.3122e-10 (0.01,0.22,0.77) (0.5,-0.4) 0.0321 0.0321
(0.5,-0.4) 2.2847e-11 (0.1,0.18,0.72) (0.8,-0.5) 0.3296 0.2975
(0.8,-0.5) 7.4285e-12 (0.1,0.23,0.67) (0.8,-0.5) 0.3302 0.0006
(0.8,-0.5) 7.4285e-12 (0.1,0.23,0.67) (0.8,-0.5) 0.3302 0

Then, we apply a 4-fold cross-validation procedure as previously done. The obtained results are
shown in Table 4. Note that this method allows to reduce the risk errors.

Table 4. Using a 4-fold cross-validation strategy.

Training data Test data
Training & Test

data
Optimum

(u, d)
Risk error

F(u, d)
Optimum

(u, d)
Risk error

F(u, d)
Total risk error

function
{V \ V1},V1 (0.3,-0.1) 0.1093 (0.3,-0.2) 0.0860 0.1953
{V \ V2},V2 (0.3,-0.1) 0.1843 (0.7,-0.6) 0.0057 0.1900
{V \ V3},V3 (0.8,-0.5) 0.1591 (0.8,-0.6) 0.0138 0.1729
{V \ V4},V4 (0.7,-0.4) 0.2575 (0.8,-0.6) 0.0721 0.3296

The observable operators of the quantum actuarial-type and trinomial models give us different
results as expected. Which model to choose? One possible approach might be to consider a mixture
of quantum models via the mixture of Hamiltonians (see, e.g., Wittek (2014)).

6. Conclusion

Several quantum type financial models are constructed that benefit from the physical interpretation
of the unpredictable stock market behaviour and associated dependences. The models provide a
general physical type framework for pricing of derivatives and a possibility to construct quantum
trading strategies. Moreover, it is revealed that certain quantum type models are applied both in
actuarial and financial sciences.
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