Citation: Khue Vu Nguyen. β-Amyloid precursor protein (APP) and the human diseases[J]. AIMS Neuroscience, 2019, 6(4): 273-281. doi: 10.3934/Neuroscience.2019.4.273
[1] | Nguyen KV (2018) Alzheimer's disease. AIMS Neuroscience 5: 74–80. doi: 10.3934/Neuroscience.2018.1.74 |
[2] | Zheng H, Koo EH (2006) The amyloid precursor protein: beyond amyloid. Mol Neurodegener 1: 5. doi: 10.1186/1750-1326-1-5 |
[3] | Nguyen KV (2015) The human β-amyloid precursor protein: biomolecular and epigenetic aspects. BioMol Concepts 6: 11–32. |
[4] | Di Luca M, Colciaghi F, Pastorino L, et al. (2000) Platelets as a peripheral district where to study pathogenetic mechanisms of Alzheimer disease: The case of amyloid precursor protein. Eur J Pharmacol 405: 277–283. doi: 10.1016/S0014-2999(00)00559-8 |
[5] | Ray B, Long JM, Sokol DK, et al. (2011) Increased secreted amyloid precursor protein-α(sAPPα) in severe autism: proposal of a specific, anabolic pathway and putative biomarker. PLoS One 6: e20405. doi: 10.1371/journal.pone.0020405 |
[6] | Sokol DK, Maloney B, Long JM, et al. (2011) Autism, Alzheimer's disease, and fragile X, APP, FMRP, and mGluR5 are molecular links. Neurology 76: 1344–1352. doi: 10.1212/WNL.0b013e3182166dc7 |
[7] | Lahiri DK, Sokol DK, Erickson C, et al. (2013) Autism as early neurodevelopmental disorders: evidence for an sAPPα-mediated anabolic pathway. Front Cell Neurosci 7: 1–13. |
[8] | Hagerman RJ, Berry-Kravis E, Kaufmann WE, et al. (2009) Advance in the treatment of fragile X syndrome. Pediatrics 123: 378–390. doi: 10.1542/peds.2008-0317 |
[9] | Bryson JB, Hobbs C, Parsons MJ, et al. (2012) Amyloid precursor protein (APP) contributes to pathology in the SOD1G93A mouse model of amyotrophic lateral sclerosis. Hum Mol Genet 21: 3871–3882. doi: 10.1093/hmg/dds215 |
[10] | Gehrmann J, Banati RB, Cuzner ML, et al. (1995) Amyloid precursor protein (APP) expression in multiple sclerosis lesions. Glia 15: 141–151. doi: 10.1002/glia.440150206 |
[11] | Grant JL, Ghosn EE, Axtell RC, et al. (2012) Reversal of paralysis and reduced inflammation from peripheral administration of β-amyloid in TH1and TH17 versions of experimental autoimmune encephalomyelitis. Sci Transl Med 4: 145ra 105. |
[12] | Hohlfeld R, Wekerle H (2012) β-Amyloid: enemy or remedy. Sci Transl Med 4: 145fs24. |
[13] | Chandra A (2015) Role of amyloid from a multiple sclerosis. Perspective: a literature review. Neuroimmunomodulation 22: 343–346. |
[14] | Matias-Guiu JA, Oreja-Guevara C, Cabrera-Martin MN, et al. (2016) Amyloid proteins and their role in multiple sclerosis. Considerations in the use of amyloid-PET imaging. Front Neurol 7: 53. |
[15] | Imamura A, Yamanouchi H, Kurokawa T, et al. (1992) Elevated fibrinopeptide A (FPA) in patients with Lesch-Nyhan syndrome. Brain Dev 14: 424–425. doi: 10.1016/S0387-7604(12)80355-X |
[16] | Irbaz bin R, Muhammmad H, Huthayfa A (2014) Recurrent thrombosis in a patient with Lesch-Nyhan syndrome. Am J Med 127: e12. |
[17] | Canobbio I, Visconte C, Momi S, et al. (2017) Platelet amyloid precursor protein is a modulator of venous thromboembolism in mice. Blood 130: 527–536. doi: 10.1182/blood-2017-01-764910 |
[18] | Nguyen KV (2014) Epigenetic regulation in amyloid precursor protein and the Lesch-Nyhan syndrome. Biochem Biophys Res Commun 446: 1091–1095. doi: 10.1016/j.bbrc.2014.03.062 |
[19] | Nguyen KV (2015) Epigenetic regulation in amyloid precursor protein with genomic rearrangements and the Lesch-Nyhan syndrome. Nucleosides Nucleotides Nucleic Acids 34: 674–690. doi: 10.1080/15257770.2015.1071844 |
[20] | Nguyen KV, Nyhan WL (2017) Quantification of various APP-mRNA isoforms and epistasis in Lesch-Nyhan disease. Neurosci Lett 643: 52–58. doi: 10.1016/j.neulet.2017.02.016 |
[21] | Hardy JA, Higgin GA (1992) Alzheimer's disease: the amyloid cascade hypothesis. Science 256: 184–185. doi: 10.1126/science.1566067 |
[22] | Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessonsrom the Alzheimer's amyloid beta-peptide. Nat Rev Mol Cell Biol 8: 102–112. |
[23] | Bettens K, Sleegers K, Van Broeckhoven C (2010) Current status on Alzheimer's disease molecular genetics: from past, to present, to future. Hum Mol Genet 19: R4–R11. doi: 10.1093/hmg/ddq142 |
[24] | Hampel H, Frank R, Broich K, et al. (2010) Biomarkers for Alzheimer's disease: academic, industry and regulatory perspectives. Nat Rev 9: 560–574. |
[25] | Jiang T, Yu JT, Zhu XC, et al. (2013) TREM2 in Alzheimer's disease. Mol Neurobiol 48: 180– 185. doi: 10.1007/s12035-013-8424-8 |
[26] | Ulrich JD, UllandTK, Colonna M, et al. (2017) Elucidating the role of TREM2 in Alzheimer's disease. Neuron 94: 237–248. doi: 10.1016/j.neuron.2017.02.042 |
[27] | Klafki HW (2006) Therapeutic approaches to Alzheimer's disease. Brain 129: 2840–2855. doi: 10.1093/brain/awl280 |
[28] | Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297: 353–356. doi: 10.1126/science.1072994 |
[29] | Chetelat G (2013) Aβ-independent processes-rethinking preclinical AD. Nat Rev Neurol 9: 123–124. doi: 10.1038/nrneurol.2013.21 |
[30] | Wang SC, Oelze B, Schumacher A (2008) Age-specific epigenetic drift in late-onset Alzheimer's disease. PLoS One 3: e2698. doi: 10.1371/journal.pone.0002698 |
[31] | Combarros O, Cortina-Borja M, Smith AD, et al. (2009) Epistasis in sporadic Alzheimer's disease. Neurobiol Aging 30: 1333–1349. doi: 10.1016/j.neurobiolaging.2007.11.027 |
[32] | Czeczor JK, McGee SL (2017) Emerging roles for the amyloid precursor protein and derived peptides in the regulation of cellular and systemic metabolism. J Neuroendocrinol 29: 1–8. |
[33] | Aulston B, Schapansky J, HuangYW, et al. (2018) Secreted amyloid precursor protein alpha activates neuronal insulin receptor and prevents diabetes-induced encephalopathy. Exp Neurol 303: 29–37. doi: 10.1016/j.expneurol.2018.01.013 |
[34] | Moreno-Gonzalez I, Edwards III G, Salvadores N, et al. (2017) Molecular interaction between type 2 diabetes and Alzheimer's disease through cross-seeding of protein misfolding. Mol Psychiatry 22: 1327–1334. doi: 10.1038/mp.2016.230 |
[35] | Saitoh T, Sundsmo M, Roch JM, et al. (1989) Secreted form of amyloid beta protein precursor is involved in the growth regulation of fibroblast. Cell 58: 615–622. doi: 10.1016/0092-8674(89)90096-2 |
[36] | Thinakaran G, Koo EH (2008) Amyloid precursor protein trafficking, processing, and function. J Biol Chem 283: 29615–29619. doi: 10.1074/jbc.R800019200 |
[37] | Zheng H, Koo EH (2011) Biology and pathology of the amyloid precursor protein. Mol Neurodegener 6: 27. doi: 10.1186/1750-1326-6-27 |
[38] | Roe CM, Fitzpatrick AL, Xiong C, et al. (2010) Cancer linked to Alzheimer disease but not vascular dementia. Neurology 74: 106–112. doi: 10.1212/WNL.0b013e3181c91873 |
[39] | Hansel DE, Rahman A, Wehner S, et al. (2003) Increase expression and processing of the Alzheimer amyloid precursor protein in pancreatic cancer may influence cellular proliferation. Cancer Res 63: 7032–7037. |
[40] | Takayama KI, Tsutsumi S, Suzuki T, et al. (2009) Amyloid precursor protein is a primary androgen target gene that promotes prostate cancer growth. Cancer Res 69: 137–142. doi: 10.1158/0008-5472.CAN-08-3633 |
[41] | Venkataramani V, Rossner C, Iffland L, et al. (2010) Histone deacetylase inhibitor valproic acid inhibits cancer cell proliferation via dow-regulation of the Alzheimer amyloid precursor protein. J Biol Chem 285: 10678–10689. doi: 10.1074/jbc.M109.057836 |
[42] | Venkataramani V, Thiele K, Behnes CL, et al. (2012) Amyloid precursor protein is a biomarker for transformed human pluripotent stem cells. Am J Pathol 180: 1636–1652. doi: 10.1016/j.ajpath.2011.12.015 |
[43] | Takagi K, Ito S, Miyazaki T, et al. (2013) Amyloid precursor protein in human breast cancer: an androgen-induced gene associated with cell proliferation. Cancer Res 104: 1532–1538. |
[44] | MiyazakiT, Ikeda K, Horie-Inoue K, et al. (2014) Amyloid precursor protein regulates migration and metalloproteinase gene expression in prostate cancer cells. Biochem Biophys Res Commun 452: 828–833. doi: 10.1016/j.bbrc.2014.09.010 |
[45] | Lim S, Yoo BK, Kim HS, et al. (2014) Amyloid-β precursor protein promotes cell proliferation and motility of advanced breast cancer. BMC Cancer 14: 928. doi: 10.1186/1471-2407-14-928 |
[46] | Pandey P, Sliker B, Peters HL, et al. (2016) Amyloid precursor protein and amyloid-precursor-like protein 2 in cancer. Oncotarget 7: 19430–19444. |
[47] | Cordell HJ (2002) Epistasis: what it means, what it doesn't mean, and statistical method to detect it in humans. Hum Mol Genet 11: 2463–2468. doi: 10.1093/hmg/11.20.2463 |
[48] | Moore JH (2003) The ubiquitous nature of epistasis in determining susceptibility to common human diseases. Hum Hered 56: 73–82. doi: 10.1159/000073735 |
[49] | Riordan JD, Nadeau JH (2017) From peas to disease: modifier genes, network resilience, and the genetics of health. Am J Hum Genet 101: 177–191. doi: 10.1016/j.ajhg.2017.06.004 |
[50] | Pan Q, Shai O, Lee LJ, et al. (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40: 1413–1415. doi: 10.1038/ng.259 |
[51] | Faustino NA, Cooper TA (2003) Pre-mRNA splicing and human disease. Genes Dev 17: 419–437. doi: 10.1101/gad.1048803 |
[52] | Nguyen KV (2019) Potential epigenomic co-management in rare diseases and epigenetic therapy. Nucleosides Nucleotides Nucleic Acids 38: 752–780. doi: 10.1080/15257770.2019.1594893 |
[53] | Saonere JA (2011) Antisense therapy, a magic bullet for the treatment of various diseases: present and future prospects. J Med Genet Genom 3: 77–83. |