Citation: Piermarco Cannarsa, Rossana Capuani, Pierre Cardaliaguet. C1;1-smoothness of constrained solutions in the calculus of variations with application to mean field games[J]. Mathematics in Engineering, 2019, 1(1): 174-203. doi: 10.3934/Mine.2018.1.174
[1] | Adams RA (1975) Sobolev Spaces. Academic Press, New York. |
[2] | Ambrosio L, Gigli N, Savare G (2008) Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics ETH Zürich, Birkhäuser Verlag. |
[3] | Arutyanov AV, Aseev SM (1997) Investigation of the degeneracy phenomenon of the maximum principle for optimal control problems with state constraints. SIAM J Control Optim 35: 930–952. doi: 10.1137/S036301299426996X |
[4] | Benamou JD, Brenier Y (2000) A computational fluid mechanics solution to the Monge- Kantorovich mass transfer problem. Numer Math 84: 375–393. doi: 10.1007/s002110050002 |
[5] | Benamou JD, Carlier G (2015) Augmented Lagrangian Methods for Transport Optimization, Mean Field Games and Degenerate Elliptic Equations. J Optimiz Theory App 167: 1–26. doi: 10.1007/s10957-015-0725-9 |
[6] | Benamou JD, Carlier G, Santambrogio F (2017) Variational Mean Field Games, In: Bellomo N, Degond P, Tadmor E (eds) Active Particles, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser, 1: 141–171. |
[7] | Brenier Y (1999) Minimal geodesics on groups of volume-preserving maps and generalized solutions of the Euler equations. Comm Pure Appl Math 52: 411–452. doi: 10.1002/(SICI)1097-0312(199904)52:4<411::AID-CPA1>3.0.CO;2-3 |
[8] | Bettiol P, Frankowska H (2007) Normality of the maximum principle for nonconvex constrained bolza problems. J Differ Equations 243: 256–269. doi: 10.1016/j.jde.2007.05.005 |
[9] | Bettiol P, Frankowska H (2008) Hölder continuity of adjoint states and optimal controls for state constrained problems. Appl Math Opt 57: 125–147. doi: 10.1007/s00245-007-9015-8 |
[10] | Bettiol P, Khalil N and Vinter RB (2016) Normality of generalized euler-lagrange conditions for state constrained optimal control problems. J Convex Anal 23: 291–311. |
[11] | Cannarsa P, Capuani R (2017) Existence and uniqueness for Mean Field Games with state constraints. Available from: http://arxiv.org/abs/1711.01063. |
[12] | Cannarsa P, Castelpietra M and Cardaliaguet P (2008) Regularity properties of a attainable sets under state constraints. Series on Advances in Mathematics for Applied Sciences 76: 120–135. doi: 10.1142/9789812776075_0006 |
[13] | Cardaliaguet P (2015)Weak solutions for first order mean field games with local coupling. Analysis and geometry in control theory and its applications 11: 111–158. |
[14] | Cardaliaguet P, Mészáros AR, Santambrogio F (2016) First order mean field games with density constraints: pressure equals price. SIAM J Control Optim 54: 2672–2709. doi: 10.1137/15M1029849 |
[15] | Cesari L (1983) Optimization–Theory and Applications: Problems with Ordinary Differential Equations, Vol 17, Springer-Verlag, New York. |
[16] | Clarke FH (1983) Optimization and Nonsmooth Analisis, John Wiley & Sons, New York. |
[17] | Dubovitskii AY and Milyutin AA (1964) Extremum problems with certain constraints. Dokl Akad Nauk SSSR 149: 759–762. |
[18] | Frankowska H (2006) Regularity of minimizers and of adjoint states in optimal control under state constraints. J Convex Anal 13: 299. |
[19] | Frankowska H (2009) Normality of the maximum principle for absolutely continuous solutions to Bolza problems under state constraints. Control Cybern 38: 1327–1340. |
[20] | Frankowska H (2010) Optimal control under state constraints. Proceedings of the International Congress of Mathematicians 2010 (ICM 2010) (In 4 Volumes) Vol. I: Plenary Lectures and Ceremonies Vols. II–IV: Invited Lectures, 2915–2942. |
[21] | Galbraith GN and Vinter RB (2003) Lipschitz continuity of optimal controls for state constrained problems. SIAM J Control Optim 42: 1727–1744. doi: 10.1137/S0363012902404711 |
[22] | Hager WW(1979) Lipschitz continuity for constrained processes. SIAM J Control Optim 17: 321– 338. |
[23] | Huang M, Caines PE and Malhamé RP (2007) Large-population cost-coupled LQG problems with nonuniform agents: Individual-mass behavior and decentralized $\epsilon$ - Nash equilibria. IEEE T Automat Contr 52: 1560–1571. doi: 10.1109/TAC.2007.904450 |
[24] | Huang M, Malhamé RP, Caines PE (2006) Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainly equivalence principle. Communication in information and systems 6: 221–252. doi: 10.4310/CIS.2006.v6.n3.a5 |
[25] | Lasry JM, Lions PL (2006) Jeux à champ moyen. I – Le cas stationnaire. CR Math 343: 619–625. |
[26] | Lasry JM, Lions PL (2006) Jeux à champ moyen. II – Horizon fini et contrôle optimal. CR Math 343: 679–684. |
[27] | Lasry JM, Lions PL (2007) Mean field games. Jpn J Math 2: 229–260. doi: 10.1007/s11537-007-0657-8 |
[28] | Lions PL (1985) Optimal control and viscosity solutions. Recent mathematical methods in dynamic programming, Springer, Berlin, Heidelberg, 94–112. |
[29] | Loewen P, Rockafellar RT (1991) The adjoint arc in nonsmooth optimization. T Am Math Soc 325: 39–72. doi: 10.1090/S0002-9947-1991-1036004-7 |
[30] | Kakutani S (1941) A generalization of Brouwer's fixed point theorem. Duke Math J 8: 457–459. doi: 10.1215/S0012-7094-41-00838-4 |
[31] | Malanowski K (1978) On regularity of solutions to optimal control problems for systems with control appearing linearly. Archiwum Automatyki i Telemechaniki 23: 227–242. |
[32] | Milyutin AA (2000) On a certain family of optimal control problems with phase constraint. Journal of Mathematical Sciences 100: 2564–2571. doi: 10.1007/BF02673842 |
[33] | Rampazzo F, Vinter RB (2000) Degenerate optimal control problems with state constraints. SIAM J Control Optim 39: 989–1007. doi: 10.1137/S0363012998340223 |
[34] | Soner HM (1986) Optimal control with state-space constraint I. SIAM J Control Optim 24: 552– 561. doi: 10.1137/0324032 |
[35] | Vinter RB (2000) Optimal control. Birkhäuser Boston, Basel, Berlin. |