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Abstract: We derive necessary optimality conditions for minimizers of regular functionals in the
calculus of variations under smooth state constraints. In the literature, this classical problem is widely
investigated. The novelty of our result lies in the fact that the presence of state constraints enters the
Euler-Lagrange equations as a local feedback, which allows to derive the C1,1-smoothness of solutions.
As an application, we discuss a constrained Mean Field Games problem, for which our optimality
conditions allow to construct Lipschitz relaxed solutions, thus improving an existence result due to the
first two authors.
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1. Introduction

The centrality of necessary conditions in optimal control is well-known and has originated an
immense literature in the fields of optimization and nonsmooth analysis, see, e.g.,
[3, 16, 17, 29, 33, 35].

In control theory, the celebrated Pontryagin Maximum Principle plays the role of the classical
Euler-Lagrange equations in the calculus of variations. In the case of unrestricted state space, such
conditions provide Lagrange multipliers—the so-called co-states—in the form of solutions to a
suitable adjoint system satisfying a certain transversality condition. Among various applications of
necessary optimality conditions is the deduction of further regularity properties for minimizers which,
a priori, would just be absolutely continuous.
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When state constraints are present, a large body of results provide adaptations of the Pontryagin
Principle by introducing appropriate corrections in the adjoint system. The price to pay for such
extensions usually consists of reduced regularity for optimal trajectories which, due to constraint
reactions, turn out to be just Lipschitz continuous while the associated co-states are of bounded
variation, see [20].

The maximum principle under state constraints was first established by Dubovitskii and Milyutin
[17] (see also the monograph [35] for different forms of such a result). It may happen that the
maximum principle is degenerate and does not yield much information (abnormal maximum
principle). As explained in [8, 10, 18, 19] in various contexts, the so-called “inward pointing
condition” generally ensures the normality of the maximum principle under state constraints. In our
setting (calculus of variation problem, with constraints on positions but not on velocities), this will
never be an issue. The maximum principle under state constraints generally involves an adjoint state
which is the sum of a W1,1 map and a map of bounded variation. This latter mapping may be very
irregular and have infinitely many jumps [32], which allows for discontinuities in optimal controls.
However, under suitable assumptions (requiring regularity of the data and the affine dynamics with
respect to controls), it has been shown that optimal controls and the corresponding adjoint states are
continuous, and even Lipschitz continuous: see the seminal work by Hager [22] (in the convex
setting) and the subsequent contributions by Malanowski [31] and Galbraith and Vinter [21] (in much
more general frameworks). Generalization to less smooth frameworks can also be found in [9, 18].
Let Ω ⊂ Rn be a bounded open domain with C2 boundary. Let Γ be the metric subspace of
AC(0,T ;Rn) defined by

Γ =
{
γ ∈ AC(0,T ;Rn) : γ(t) ∈ Ω, ∀t ∈ [0,T ]

}
,

with the uniform metric. For any x ∈ Ω, we set

Γ[x] = {γ ∈ Γ : γ(0) = x} .

We consider the problem of minimizing the classical functional of the calculus of variations

J[γ] =

∫ T

0
f (t, γ(t), γ̇(t)) dt + g(γ(T )).

Let U ⊂ Rn be an open set such that Ω ⊂ U. Given x ∈ Ω, we consider the constrained minimization
problem

inf
γ∈Γ[x]

J[γ], where J[γ] =
{ ∫ T

0
f (t, γ(t), γ̇(t)) dt + g(γ(T ))

}
, (1.1)

where f : [0,T ] × U × Rn → R and g : U → R . In this paper, we obtain a certain formulation of
the necessary optimality conditions for the above problem, which are particularly useful to study the
regularity of minimizers. More precisely, given a minimizer γ? ∈ Γ[x] of (1.1), we prove that there
exists a Lipschitz continuous arc p : [0,T ]→ Rn such thatγ̇?(t) = −DpH(t, γ?(t), p(t)) for all t ∈ [0,T ]

ṗ(t) = DxH(t, γ?(t), p(t)) − Λ(t, γ?, p)1∂Ω(γ?)DbΩ(γ?(t)) for a. e. t ∈ [0,T ]
(1.2)
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where Λ is a bounded continuous function independent of γ? and p (Theorem 3.1). By the above
necessary conditions we derive a sort of maximal regularity, showing that any solutions γ? is of class
C1,1. As is customary in this kind of problems, the proof relies on the analysis of suitable penalized
functional which has the following form:

inf
γ ∈ AC(0,T ;Rn)

γ(0) = x

{∫ T

0

[
f (t, γ(t), γ̇(t)) +

1
ε

dΩ(γ(t))
]

dt +
1
δ

dΩ(γ(T )) + g(γ(T ))
}
.

Then, we show that all solutions of the penalized problem remain in Ω (Lemma3.7).
A direct consequence of our necessary conditions is the Lipschitz regularity of the value function

associated to (1.1) (Proposition 4.1).
Our interest is also motivated by application to mean field games, as we explain below. Mean field

games (MFG) theory has been developed simultaneously by Lasry and Lions ([25, 26, 27]) and by
Huang, Malhamé and Caines ([23, 24]) in order to study differential games with an infinite number of
rational players in competition. The simplest MFG model leads to systems of partial differential
equations involving two unknown functions: the value function u of an optimal control problem of a
typical player and the density m of the population of players. In the presence of state constraints, the
usual construction of solutions to the MFG system has to be completely revised because the
minimizers of the problem lack many of the good properties of the unconstrained case. Such
constructions are discussed in detail in [11], where a relaxed notion of solution to the constrained
MFG problem was introduced following the so-called Lagrangian formulation (see [4, 5, 6, 7, 13, 14].
In this paper, applying our necessary conditions, we deduce the existence of more regular solutions
than those constructed in [11], assuming data to be Lipschitz continuous.

This paper is organised as follows. In Section 2, we introduce the notation and recall preliminary
results. In Section 3, we derive necessary conditions for the constrained problem. Moreover, we prove
the C1,1-smoothness of minimizers. In Section 4, we apply our necessary conditions to obtain the
Lipschitz regularity of the value function for the constrained problem. Furthermore, we deduce the
existence of more regular constrained MFG equilibria. Finally, in the Appendix, we prove a technical
result on limiting subdifferentials.

2. Preliminaries

Throughout this paper we denote by | · | and 〈·〉 , respectively, the Euclidean norm and scalar product
in Rn. Let A ∈ Rn×n be a matrix. We denote by || · || the norm of A defined as follows

||A|| = max
x∈Rn, |x|=1

||Ax|| .

For any subset S ⊂ Rn, S stands for its closure, ∂S for its boundary, and S c for Rn \ S . We denote by
1S : Rn → {0, 1} the characteristic function of S , i.e.,

1S (x) =

1 x ∈ S ,

0 x ∈ S c.

We write AC(0,T ;Rn) for the space of all absolutely continuous Rn-valued functions on [0,T ],
equipped with the uniform norm ||γ||∞ = sup[0,T ] |γ(t)|. We observe that AC(0,T ;Rn) is not a Banach
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space.
Let U be an open subset of Rn. C(U) is the space of all continuous functions on U and Cb(U) is the
space of all bounded continuous functions on U. Ck(U) is the space of all functions φ : U → R that
are k-times continuously differentiable. Let φ ∈ C1(U). The gradient vector of φ is denoted by
Dφ = (Dx1φ, · · · ,Dxnφ), where Dxiφ =

∂φ

∂xi
. Let φ ∈ Ck(U) and let α = (α1, · · · , αn) ∈ Nn be a

multiindex. We define Dαφ = Dα1
x1 · · ·D

αn
xnφ. Ck

b(U) is the space of all function φ ∈ Ck(U) and such that

‖φ‖k,∞ := sup
x ∈ U
|α| ≤ k

|Dαφ(x)| < ∞

Let Ω be a bounded open subset of Rn with C2 boundary. C1,1(Ω) is the space of all the functions C1 in
a neighborhood U of Ω and with locally Lipschitz continuous first order derivates in U.
The distance function from Ω is the function dΩ : Rn → [0,+∞[ defined by

dΩ(x) := inf
y∈Ω
|x − y| (x ∈ Rn).

We define the oriented boundary distance from ∂Ω by

bΩ(x) = dΩ(x) − dΩc(x) (x ∈ Rn).

We recall that, since the boundary of Ω is of class C2, there exists ρ0 > 0 such that

bΩ(·) ∈ C2
b on Σρ0 =

{
y ∈ B(x, ρ0) : x ∈ ∂Ω

}
. (2.1)

Throughout the paper, we suppose that ρ0 is fixed so that (2.1) holds.
Take a continuous function f : Rn → R and a point x ∈ Rn. A vector p ∈ Rn is said to be a proximal
subgradient of f at x if there exists ε > 0 and C ≥ 0 such that

p · (y − x) ≤ f (y) − f (x) + C|y − x|2 for all y that satisfy |y − x| ≤ ε.

The set of all proximal subgradients of f at x is called the proximal subdifferential of f at x and
is denoted by ∂p f (x). A vector p ∈ Rn is said to be a limiting subgradient of f at x if there exist
sequences xi ∈ R

n, pi ∈ ∂
p f (xi) such that xi → x and pi → p (i→ ∞).

The set of all limiting subgradients of f at x is called the limiting subdifferential and is denoted by
∂ f (x). In particular, for the distance function we have the following result.

Lemma 2.1. Let Ω be a bounded open subset of Rn with C2 boundary. Then, for every x ∈ Rn it holds

∂pdΩ(x) = ∂dΩ(x) =


DbΩ(x) 0 < bΩ(x) < ρ0,

DbΩ(x)[0, 1] x ∈ ∂Ω,

0 x ∈ Ω,

where ρ0 is as in (2.1) and DbΩ(x)[0, 1] denotes the set {DbΩ(x)α : α ∈ [0, 1]}.

The proof is given in the Appendix.
Let X be a separable metric space. Cb(X) is the space of all bounded continuous functions on X. We
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denote by B(X) the family of the Borel subset of X and by P(X) the family of all Borel probability
measures on X. The support of η ∈ P(X), supp(η), is the closed set defined by

supp(η) :=
{
x ∈ X : η(V) > 0 for each neighborhood V of x

}
.

We say that a sequence (ηi) ⊂ P(X) is narrowly convergent to η ∈ P(X) if

lim
i→∞

∫
X

f (x) dηi(x) =

∫
X

f (x) dη ∀ f ∈ Cb(X).

We denote by d1 the Kantorovich-Rubinstein distance on X, which—when X is compact—can be
characterized as follows

d1(m,m′) = sup
{ ∫

X
f (x) dm(x) −

∫
X

f (x) dm′(x)
∣∣∣∣ f : X → R is 1-Lipschitz

}
, (2.2)

for all m,m′ ∈ P(X).
Let Ω be a bounded open subset of Rn with C2 boundary. We write Lip(0,T ;P(Ω)) for the space of all
maps m : [0,T ]→ P(Ω) that are Lipschitz continuous with respect to d1, i.e.,

d1(m(t),m(s)) ≤ C|t − s|, ∀t, s ∈ [0,T ], (2.3)

for some constant C ≥ 0. We denote by Lip(m) the smallest constant that verifies (2.3).

3. Necessary conditions and smoothness of minimizers

3.1. Assumptions and main result

Let Ω ⊂ Rn be a bounded open set with C2 boundary. Let Γ be the metric subspace of AC(0,T ;Rn)
defined by

Γ =
{
γ ∈ AC(0,T ;Rn) : γ(t) ∈ Ω, ∀t ∈ [0,T ]

}
.

For any x ∈ Ω, we set
Γ[x] = {γ ∈ Γ : γ(0) = x} .

Let U ⊂ Rn be an open set such that Ω ⊂ U. Given x ∈ Ω, we consider the constrained minimization
problem

inf
γ∈Γ[x]

J[γ], where J[γ] =
{ ∫ T

0
f (t, γ(t), γ̇(t)) dt + g(γ(T ))

}
. (3.1)

We denote by X[x] the set of solutions of (3.1), that is

X[x] =
{
γ? ∈ Γ[x] : J[γ?] = inf

Γ[x]
J[γ]

}
.

We assume that f : [0,T ] × U × Rn → R and g : U → R satisfy the following conditions.

(g1) g ∈ C1
b(U)
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(f0) f ∈ C
(
[0,T ] × U × Rn) and for all t ∈ [0,T ] the function (x, v) 7−→ f (t, x, v) is differentiable.

Moreover, Dx f , Dv f are continuous on [0,T ] × U × Rn and there exists a constant M ≥ 0 such
that

| f (t, x, 0)| + |Dx f (t, x, 0)| + |Dv f (t, x, 0)| ≤ M ∀ (t, x) ∈ [0,T ] × U. (3.2)

(f1) For all t ∈ [0,T ] the map (x, v) 7−→ Dv f (t, x, v) is continuously differentiable and there exists a
constant µ ≥ 1 such that

I
µ
≤ D2

vv f (t, x, v) ≤ Iµ, (3.3)

||D2
vx f (t, x, v)|| ≤ µ(1 + |v|), (3.4)

for all (t, x, v) ∈ [0,T ] × U × Rn, where I denotes the identity matrix.

(f2) For all (x, v) ∈ U × Rn the function t 7−→ f (t, x, v) and the map t 7−→ Dv f (t, x, v) are Lipschitz
continuous. Moreover, there exists a constant κ ≥ 0 such that

| f (t, x, v) − f (s, x, v)| ≤ κ(1 + |v|2)|t − s| (3.5)
|Dv f (t, x, v) − Dv f (s, x, v)| ≤ κ(1 + |v|)|t − s| (3.6)

for all t, s ∈ [0,T ], x ∈ U, v ∈ Rn.

Remark 3.1. By classical results in the calculus of variation (see, e.g., [15, Theorem 11.1i]), there
exists at least one minimizer of (3.1) in Γ for any fixed point x ∈ Ω.

In the next lemma we show that (f0)-(f2) imply the useful growth conditions for f and for its
derivatives.

Lemma 3.1. Suppose that (f0)-(f2) hold. Then, there exists a positive constant C(µ,M) depending only
on µ and M such that

|Dv f (t, x, v)| ≤ C(µ,M)(1 + |v|), (3.7)
|Dx f (t, x, v)| ≤ C(µ,M)(1 + |v|2), (3.8)
1

4µ
|v|2 −C(µ,M) ≤ f (t, x, v) ≤ 4µ|v|2 + C(µ,M), (3.9)

for all (t, x, v) ∈ [0,T ] × U × Rn.

Proof. By (3.2), and by (3.3) one has that

|Dv f (t, x, v)| ≤ |Dv f (t, x, v) − Dv f (t, x, 0)| + |Dv f (t, x, 0)|

≤

∫ 1

0

∣∣∣D2
vv f (t, x, τv)

∣∣∣|v| dτ + |Dv f (t, x, 0)| ≤ µ|v| + M ≤ C(µ,M)(1 + |v|)

and so (3.7) holds. Furthermore, by (3.2), and by (3.4) we have that

|Dx f (t, x, v)| ≤ |Dx f (t, x, v) − Dx f (t, x, 0)| + |Dx f (t, x, 0)| ≤
∫ 1

0

∣∣∣D2
xv f (t, x, τv)

∣∣∣|v| dτ + M
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≤ µ(1 + |v|)|v| + M ≤ C(µ,M)(1 + |v|2).

Therefore, (3.8) holds. Moreover, fixed v ∈ Rn there exists a point ξ of the segment with endpoints 0,
v such that

f (t, x, v) = f (t, x, 0) + 〈Dv f (t, x, 0), v〉 +
1
2
〈D2

vv f (t, x, ξ)v, v〉.

By (3.2), (3.3), and by (3.7) we have that

−C(µ,M) +
1

4µ
|v|2 ≤ −M −C(µ,M)|v| +

1
2µ
|v|2 ≤ f (t, x, v) ≤ M + C(µ,M)|v| +

µ

2
|v|2

≤ C(µ,M) + 4µ|v|2,

and so (3.9) holds. This completes the proof. �

In the next result we show a special property of the minimizers of (3.1).

Lemma 3.2. For any x ∈ Ω and for any γ? ∈ X[x] we have that∫ T

0

1
4µ
|γ̇?(t)|2 dt ≤ K,

where
K := T

(
C(µ,M) + M

)
+ 2 max

U
|g(x)|. (3.10)

Proof. Let x ∈ Ω and let γ? ∈ X[x]. By comparing the cost of γ? with the cost of the constant trajectory
γ?(t) ≡ x, one has that∫ T

0
f (t, γ?(t), γ̇?(t)) dt + g(γ?(T )) ≤

∫ T

0
f (t, x, 0) dt + g(x) (3.11)

≤ T max
[0,T ]×U

| f (t, x, 0)| + max
U
|g(x)|.

Using (3.2) and (3.9) in (3.11), one has that∫ T

0

1
4µ
|γ̇?(t)|2 dt ≤ K,

where
K := T

(
C(µ,M) + M

)
+ 2 max

U
|g(x)|.

�

We denote by H : [0,T ] × U × Rn → R the Hamiltonian

H(t, x, p) = sup
v∈Rn

{
− 〈p, v〉 − f (t, x, v)

}
, ∀ (t, x, p) ∈ [0,T ] × U × Rn.

Our assumptions on f imply that H satisfies the following conditions.
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(H0) H ∈ C
(
[0,T ] × U × Rn) and for all t ∈ [0,T ] the function (x, p) 7−→ H(t, x, p) is differentiable.

Moreover, DxH, DpH are continuous on [0,T ] × U × Rn and there exists a constant M′ ≥ 0 such
that

|H(t, x, 0)| + |DxH(t, x, 0)| + |DpH(t, x, 0)| ≤ M′ ∀ (t, x) ∈ [0,T ] × U. (3.12)

(H1) For all t ∈ [0,T ] the map (x, p) 7−→ DpH(t, x, p) is continuously differentiable and

I
µ
≤ D2

ppH(t, x, p) ≤ Iµ, (3.13)

||D2
pxH(t, x, p)|| ≤ C(µ,M′)(1 + |p|), (3.14)

for all (t, x, p) ∈ [0,T ] ×U × Rn, where µ is the constant given in (f1) and C(µ,M′) depends only
on µ and M′.

(H2) For all (x, p) ∈ U × Rn the function t 7−→ H(t, x, p) and the map t 7−→ DpH(t, x, p) are Lipschitz
continuous. Moreover

|H(t, x, p) − H(s, x, p)| ≤ κC(µ,M′)(1 + |p|2)|t − s|, (3.15)
|DpH(t, x, p) − DpH(s, x, p)| ≤ κC(µ,M′)(1 + |p|)|t − s|, (3.16)

for all t, s ∈ [0,T ], x ∈ U, p ∈ Rn, where κ is the constant given in (f2) and C(µ,M′) depends
only on µ and M′.

Remark 3.2. Arguing as in Lemma 3.1 we deduce that

|DpH(t, x, p)| ≤ C(µ,M′)(1 + |p|), (3.17)
|DxH(t, x, p)| ≤ C(µ,M′)(1 + |p|2), (3.18)
1

4µ
|p|2 −C(µ,M′) ≤ H(t, x, p) ≤ 4µ|p|2 + C(µ,M′), (3.19)

for all (t, x, p) ∈ [0,T ] × U × Rn and C(µ,M′) depends only on µ and M′.

Under the above assumptions on Ω, f and g our necessary conditions can be stated as follows.

Theorem 3.1. For any x ∈ Ω and any γ? ∈ X[x] the following holds true.

(i) γ? is of class C1,1([0,T ]; Ω).

(ii) There exist:

(a) a Lipschitz continuous arc p : [0,T ]→ Rn,

(b) a constant ν ∈ R such that

0 ≤ ν ≤ max
{

1, 2µ sup
x∈U

∣∣∣∣DpH(T, x,Dg(x))
∣∣∣∣} ,

which satisfy the adjoint systemγ̇? = −DpH(t, γ?, p) for all t ∈ [0,T ],
ṗ = DxH(t, γ?, p) − Λ(t, γ?, p)1∂Ω(γ?)DbΩ(γ?) for a.e. t ∈ [0,T ],

(3.20)
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and the transversality condition

p(T ) = Dg(γ?(T )) + νDbΩ(γ?(T ))1∂Ω(γ?(T )),

where Λ : [0,T ] × Σρ0 × R
n → R is a bounded continuous function independent of γ? and p.

Moreover,

(iii) the following estimate holds
||γ̇?||∞ ≤ L?, ∀γ? ∈ X[x], (3.21)

where L? = L?(µ,M′,M, κ,T, ||Dg||∞, ||g||∞).

The (feedback) function Λ in (3.20) can be computed explicitly, see Remark 3.4 below.

3.2. Proof of Theorem 3.1 for U = Rn

In this section, we prove Theorem 3.1 in the special case of U = Rn. The proof for a general open
set U will be given in the next section.

The proof is based on [12, Theorem 2.1] where the Maximum Principle under state constraints is
obtained for a Mayer problem. The reasoning requires several intermediate steps.
Fix x ∈ Ω. The key point is to approximate the constrained problem by penalized problems as follows

inf
γ ∈ AC(0,T ;Rn)

γ(0) = x

{∫ T

0

[
f (t, γ(t), γ̇(t)) +

1
ε

dΩ(γ(t))
]

dt +
1
δ

dΩ(γ(T )) + g(γ(T ))
}
. (3.22)

Then, we will show that, for ε > 0 and δ ∈ (0, 1] small enough, the solutions of the penalized problem
remain in Ω.
Observe that the Hamiltonian associated with the penalized problem is given by

Hε(t, x, p) = sup
v∈Rn

{
− 〈p, v〉 − f (t, x, v) −

1
ε

dΩ(x)
}

= H(t, x, p) −
1
ε

dΩ(x), (3.23)

for all (t, x, p) ∈ [0,T ] × Rn × Rn.
By classical results in the calculus of variation (see, e.g., [15, Section 11.2]), there exists at least one
mimimizer of (3.22) in AC(0,T ;Rn) for any fixed initial point x ∈ Ω. We denote by Xε,δ[x] the set of
solutions of (3.22).
Remark 3.3. Arguing as in Lemma 3.2 we have that, for any x ∈ Ω, all γ ∈ Xε,δ[x] satisfy∫ T

0

[ 1
4µ
|γ̇(t)|2 +

1
ε

dΩ(γ(t))
]

dt ≤ K, (3.24)

where K is the constant given in (3.10).
The first step of the proof consists in showing that the solutions of the penalized problem remain in a
neighborhood of Ω.

Lemma 3.3. Let ρ0 be such that (2.1) holds. For any ρ ∈ (0, ρ0], there exists ε(ρ) > 0 such that for all
ε ∈ (0, ε(ρ)] and all δ ∈ (0, 1] we have that

∀ x ∈ Ω, γ ∈ Xε,δ[x] =⇒ sup
t∈[0,T ]

dΩ(γ(t)) ≤ ρ. (3.25)
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Proof. We argue by contradiction. Assume that, for some ρ > 0, there exist sequences {εk}, {δk}, {tk},
{xk} and {γk} such that

εk ↓ 0, δk > 0, tk ∈ [0,T ], xk ∈ Ω, γk ∈ Xεk ,δk[xk] and dΩ(γk(tk)) > ρ, for all k ≥ 1.

By Remark 3.3, one has that for all k ≥ 1∫ T

0

[ 1
4µ
|γ̇k(t)|2 +

1
εk

dΩ(γk(t))
]

dt ≤ K,

where K is the constant given in (3.10). The above inequality implies that γk is 1/2−Hölder continuous
with Hölder constant (4µK)1/2. Then, by the Lipschitz continuity of dΩ and the regularity of γk, we
have that

dΩ(γk(tk)) − dΩ(γk(s)) ≤ (4µK)1/2|tk − s|1/2, s ∈ [0,T ].

Since dΩ(γk(tk)) > ρ, one has that

dΩ(γk(s)) > ρ − (4µK)1/2|tk − s|1/2.

Hence, dΩ(γk(s)) ≥ ρ/2 for all s ∈ J := [tk −
ρ2

16µK , tk +
ρ2

16µK ] ∩ [0,T ] and all k ≥ 1. So,

K ≥
1
εk

∫ T

0
dΩ(γk(t)) dt ≥

1
εk

∫
J

dΩ(γk(t)) dt ≥
1
εk

ρ3

32µK
.

But the above inequality contradicts the fact that εk ↓ 0. So, (3.25) holds true. �

In the next lemma, we show the necessary conditions for the minimizers of the penalized problem.

Lemma 3.4. Let ρ ∈ (0, ρ0] and let ε ∈ (0, ε(ρ)], where ε(ρ) is given by Lemma 3.3. Fix δ ∈ (0, 1], let
x0 ∈ Ω, and let γ ∈ Xε,δ[x0]. Then,

(i) γ is of class C1,1([0,T ];Rn);

(ii) there exists an arc p ∈ Lip(0,T ;Rn), a measurable map λ : [0,T ] → [0, 1], and a constant
β ∈ [0, 1] such that

γ̇(t) = −DpH(t, γ(t), p(t)), for all t ∈ [0,T ],
ṗ(t) = DxH(t, γ(t), p(t)) − λ(t)

ε
DbΩ(γ(t)), for a.e. t ∈ [0,T ],

p(T ) = Dg(γ(T )) +
β

δ
DbΩ(γ(T )),

(3.26)

where

λ(t) ∈


{0} if γ(t) ∈ Ω,

{1} if 0 < dΩ(γ(t)) < ρ,
[0, 1] if γ(t) ∈ ∂Ω,

(3.27)

and

β ∈


{0} if γ(T ) ∈ Ω,

{1} if 0 < dΩ(γ(T )) < ρ,
[0, 1] if γ(T ) ∈ ∂Ω.

(3.28)

Mathematics in Engineering Volume 1, Issue 1, 174–203



184

Moreover,

(iii) the function

r(t) := H(t, γ(t), p(t)) −
1
ε

dΩ(γ(t)), ∀t ∈ [0,T ]

belongs to AC(0,T ;R) and satisfies∫ T

0
|ṙ(t)| dt ≤ κ(T + 4µK),

where K is the constant given in (3.10) and µ, κ are the constants in (3.5) and (3.9), respectively;

(iv) the following estimate holds

|p(t)|2 ≤ 4µ
[
1
ε

dΩ(γ(t)) +
C1

δ2

]
, ∀t ∈ [0,T ], (3.29)

where C1 = 8µ + 8µ||Dg||2∞ + 2C(µ,M′) + κ(T + 4µK).

Proof. In order to use the Maximum Principle in the version of [35, Theorem 8.7.1], we rewrite (3.22)
as a Mayer problem in a higher dimensional state space. Define X(t) ∈ Rn × R as

X(t) =

(
γ(t)
z(t)

)
,

where z(t) =
∫ t

0

[
f (s, γ(s), γ̇(s)) + 1

ε
dΩ(γ(s))

]
ds. Then the state equation becomes

Ẋ(t) =

γ̇(t)
ż(t)

 = Fε(t, X(t), u(t)),

X(0) =

x0

0

 .
where

Fε(t, X, u) =

(
u

Lε(t, x, u)

)
and Lε(t, x, u) = f (t, x, u) + 1

ε
dΩ(x) for X = (x, z) and (t, x, z, u) ∈ [0,T ] × Rn × R × Rn. Thus, (3.22)

can be written as
min

{
Φ(Xu(T )) : u ∈ L1

}
, (3.30)

where Φ(X) = g(x)+ 1
δ

dΩ(x)+ z for any X = (x, z) ∈ Rn×R. The associated unmaximized Hamiltonian
is given by

Hε(t, X, P, u) = −〈P,Fε(t, X, u)〉, ∀(t, X, P, u) ∈ [0,T ] × Rn+1 × Rn+1 × Rn.

We observe that, as γ(·) is minimizer for (3.22), X is minimizer for (3.30). Hence, the hypotheses
of [35, Theorem 8.7.1] are satisfied. It follows that there exist P(·) = (p(·), b(·)) ∈ AC(0,T ;Rn+1),
r(·) ∈ AC(0,T ;R), and λ0 ≥ 0 such that
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(i)
(
P, λ0

)
.

(
0, 0

)
,

(ii)
(
ṙ(t), Ṗ(t)

)
∈ co ∂t,XHε

(
t, X(t), P(t), γ̇(t)

)
, a.e t ∈ [0,T ],

(iii) P(T ) ∈ λ0∂Φ(Xu(T )),

(iv) Hε

(
t, X(t), P(t), γ̇(t)

)
= maxu∈RnHε

(
t, X(t), P(t), u

)
, a.e. t ∈ [0,T ],

(v) Hε

(
t, X(t), P(t), γ̇(t)

)
= r(t), a.e. t ∈ [0,T ],

where ∂t,XHε and ∂Φ denote the limiting subdifferential of Hε and Φ with respect to (t, X) and X
respectively, while co stands for the closed convex hull. Using the definition ofHε we have that

(p, b, λ0) . (0, 0, 0), (3.31)
(ṙ(t), ṗ(t)) ∈ −b(t) co ∂t,xLε(t, γ(t), γ̇(t)), (3.32)

ḃ(t) = 0, (3.33)

p(T ) ∈ λ0 ∂(g +
1
δ

dΩ)(γ(T )), (3.34)

b(T ) = λ0, (3.35)
r(t) = Hε(t, γ(t), p(t)), (3.36)

where ∂t,xLε and ∂(g + 1
δ

dΩ) stands for the limiting subdifferential of Lε(·, ·, u) and g(·) + 1
δ
dΩ(·). We

claim that λ0 > 0. Indeed, suppose that λ0 = 0. Then b ≡ 0 by (3.33) and (3.35). Moreover, p(T ) = 0
by (3.34). It follows from (3.32) that p ≡ 0, which is in contradiction with (3.31). So, λ0 > 0 and we
may rescale p and b so that b(t) = λ0 = 1 for any t ∈ [0,T ].
Note that the Weierstrass Condition (iv) becomes

− 〈p(t), γ̇(t)〉 − f (t, γ(t), γ̇(t)) = sup
u∈Rn

{
− 〈p(t), u〉 − f (t, γ(t), u)

}
. (3.37)

Therefore
γ̇(t) = −DpH(t, γ(t), p(t)), a.e. t ∈ [0,T ]. (3.38)

By Lemma 2.1, by the definition of ρ, and by (3.5) we have that

∂t,xLε(t, x, u) ⊂


[−κ(1 + |u|2), κ(1 + |u|2)] × Dx f (t, x, u) if x ∈ Ω,

[−κ(1 + |u|2), κ(1 + |u|2)] ×
(
Dx f (t, x, u) + 1

ε
DbΩ(x)

)
if 0 < bΩ(x) < ρ,

[−κ(1 + |u|2), κ(1 + |u|2)] ×
(
Dx f (t, x, u) + 1

ε
[0, 1] DbΩ(x)

)
if x ∈ ∂Ω.

Thus (3.32) implies that there exists λ(t) ∈ [0, 1] as in (3.27) such that

|ṙ(t)| ≤ κ(1 + |γ̇(t)|2), ∀t ∈ [0,T ], (3.39)

ṗ(t) = −Dx f (t, γ(t), γ̇(t)) −
λ(t)
ε

DbΩ(γ(t)), a.e. t ∈ [0,T ]. (3.40)

Hence, by (3.39), and by Remark 3.3 we conclude that∫ T

0
|ṙ(t)| dt ≤ κ

∫ T

0
(1 + |γ̇(t)|2) dt ≤ κ(T + 4µK). (3.41)
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Moreover, by Lemma 2.1, and by assumption on g, one has that

∂
(
g +

1
δ

dΩ

)
(x) ⊂


Dg(x) if x ∈ Ω,

Dg(x) + 1
δ

DbΩ(x) if 0 < bΩ(x) < ρ,
Dg(x) + 1

δ
[0, 1] DbΩ(x) if x ∈ ∂Ω.

So, by (3.34), there exists β ∈ [0, 1] as in (3.28) such that

p(T ) = Dg(x) +
β

δ
DbΩ(x). (3.42)

Finally, by well-known properties of the Legendre transform one has that

DxH(t, x, p) = −Dx f
(
t, x,−DpH(t, x, p)

)
.

So, recalling (3.38), (3.40) can be rewritten as

ṗ(t) = DxH(t, γ(t), p(t)) −
λ(t)
ε

DbΩ(γ(t)), a.e. t ∈ [0,T ].

We have to prove estimate (3.29). Recalling (3.23) and (3.19), we have that

Hε(t, γ(t), p(t)) = H(t, γ(t), p(t)) −
1
ε

dΩ(γ(t)) ≥
1

4µ
|p(t)|2 −C(µ,M′) −

1
ε

dΩ(γ(t)).

So, using (3.41) one has that

|Hε(T, γ(T ), p(T )) − Hε(t, γ(t), p(t))| = |r(T ) − r(t)| ≤
∫ T

t
|ṙ(s)| ds ≤ κ(T + 4µK).

Moreover, (3.42) implies that |p(T )| ≤ 1
δ

+ ||Dg||∞. Therefore, using again (3.19), we obtain

1
4µ
|p(t)|2 −C(µ,M′) −

1
ε

dΩ(γ(t)) ≤ Hε(t, γ(t), p(t)) ≤ Hε(T, γ(T ), p(T )) + κ(T + 4µK)

≤ 4µ|p(T )|2 + C(µ,M′) + κ(T + 4µK) ≤ 8µ
[

1
δ2 + ||Dg||2∞

]
+ C(µ,M′) + κ(T + 4µK).

Hence,

|p(t)|2 ≤ 4µ
[
1
ε

dΩ(γ(t)) +
C1

δ2

]
,

where C1 = 8µ + 8µ||Dg||2∞ + 2C(µ,M′) + κ(T + 4µK). This completes the proof of (3.29).
Finally, by the regularity of H, we have that p ∈ Lip(0,T ;Rn). So, γ ∈ C1,1([0,T ];Rn). Observing
that the right-hand side of the equality γ̇(t) = −DpH(t, γ(t), p(t)) is continuous we conclude that this
equality holds for all t in [0,T ]. �

Lemma 3.5. Let ρ ∈ (0, ρ0] and let ε ∈ (0, ε(ρ)], where ε(ρ) is given by Lemma 3.3. Fix δ ∈ (0, 1],
let x ∈ Ω, and let γ ∈ Xε,δ[x]. If γ(t) < ∂Ω for some t ∈ [0,T ], then there exists τ > 0 such that
γ ∈ C2

((
t − τ, t + τ

)
∩ [0,T ];Rn

)
.
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Proof. Let γ ∈ Xε,δ[x] and let t ∈ [0,T ] be such that γ(t) ∈ Ω ∪ (Rn \ Ω). If γ(t) ∈ Rn \ Ω, then there
exists τ > 0 such that γ(t) ∈ Rn \ Ω for all t ∈ I := (t − τ, t + τ) ∩ [0,T ]. By Lemma 3.4, we have that
there exists p ∈ Lip(0,T ;Rn) such that

γ̇(t) = −DpH(t, γ(t), p(t)),

ṗ(t) = DxH(t, γ(t), p(t)) −
1
ε

DbΩ(γ(t)),

for t ∈ I. Since p(t) is Lipschitz continuous for t ∈ I, and γ̇(t) = −DpH(t, γ(t), p(t)), then γ belongs to
C1 (I;Rn). Moreover, by the regularity of H, bΩ, p, and γ one has that ṗ(t) is continuous for t ∈ I. Then
p ∈ C1 (I;Rn). Hence, γ̇ ∈ C1 (I;Rn). So, γ ∈ C2 (I;Rn). Finally, if γ(t) ∈ Ω, the conclusion follows by
a similar argument. �

In the next two lemmas, we show that, for ε > 0 and δ ∈ (0, 1] small enough, any solution γ of problem
(3.22) belongs to Ω for all t ∈ [0,T ]. For this we first establish that, if δ ∈ (0, 1] is small enough and
γ(T ) < Ω, then the function t 7−→ bΩ(γ(t)) has nonpositive slope at t = T . Then we prove that the
entire trajectory γ remains in Ω provided ε is small enough. Hereafter, we set

ε0 = ε(ρ0), where ρ0 is such that (2.1) holds and ε(·) is given by Lemma 3.3.

Lemma 3.6. Let
δ =

1
2µN

∧ 1, (3.43)

where
N = sup

x∈Rn
|DpH(T, x,Dg(x))|.

Fix any δ1 ∈ (0, δ] and let x ∈ Ω. Let ε ∈ (0, ε0]. If γ ∈ Xδ1,ε[x] is such that γ(T ) < Ω, then

〈γ̇(T ),DbΩ(γ(T ))〉 ≤ 0.

Proof. As γ(T ) < Ω, by Lemma 3.4 we have that p(T ) = Dg(γ(T )) + 1
δ

DbΩ(γ(T )). Hence,〈
DpH

(
T, γ(T ), p(T )

)
,DbΩ(γ(T ))

〉
=

〈
DpH

(
T, γ(T ),Dg(γ(T ))

)
,DbΩ(γ(T ))

〉
+

〈
DpH

(
T, γ(T ),Dg(γ(T )) +

1
δ

DbΩ(γ(T ))
)
− DpH

(
T, γ(T ),Dg(γ(T ))

)
,DbΩ(γ(T ))

〉
.

Recalling that D2
ppH(t, x, p) ≥ I

µ
, one has that

〈
DpH

(
T, γ(T ),Dg(γ(T )) +

1
δ

DbΩ(γ(T ))
)
− DpH

(
T, γ(T ),Dg(γ(T ))

)
,

1
δ

DbΩ(γ(T ))
〉

≥
1

2µ
1
δ2 |DbΩ(γ(T ))|2 =

1
2δ2µ

.

So, 〈
DpH

(
T, γ(T ), p(T )

)
,DbΩ(γ(T ))

〉
≥

1
2δµ
− |DpH

(
T, γ(T ),Dg(γ(T ))

)
|.
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Therefore, we obtain 〈
γ̇(T ),DbΩ(γ(T ))

〉
= −

〈
DpH

(
T, γ(T ), p(T )),DbΩ(γ(T )

)〉
≤ −

1
2δµ

+ |DpH(T, γ(T ),Dg(γ(T )))|.

Thus, choosing δ as in (3.43) gives the result. �

Lemma 3.7. Fix δ as in (3.43). Then there exists ε1 ∈ (0, ε0], such that for any ε ∈ (0, ε1]

∀x ∈ Ω, γ ∈ Xε,δ[x] =⇒ γ(t) ∈ Ω ∀t ∈ [0,T ].

Proof. We argue by contradiction. Assume that there exist sequences {εk}, {tk}, {xk}, {γk} such that

εk ↓ 0, tk ∈ [0,T ], xk ∈ Ω, γk ∈ Xεk ,δ[xk] and γk(tk) < Ω, for all k ≥ 1. (3.44)

Then, for each k ≥ 1 one could find an interval with end-points 0 ≤ ak < bk ≤ T such that
dΩ(γk(ak)) = 0,
dΩ(γk(t)) > 0 t ∈ (ak, bk),
dΩ(γk(bk)) = 0 or else bk = T.

Let tk ∈ (ak, bk] be such that
dΩ(γk(tk)) = max

t∈[ak ,bk]
dΩ(γk(t)).

We note that, by Lemma 3.5, γk is of class C2 in a neighborhood of tk.
Step 1
We claim that

d2

dt2 dΩ(γk(t))
∣∣∣∣
t=tk
≤ 0. (3.45)

Indeed, (3.45) is trivial if tk ∈ (ak, bk). Suppose tk = bk. Since tk is a maximum point of the map
t 7−→ dΩ(γk(t)) and γk(tk) < Ω, we have that dΩ(γk(tk)) , 0. So, bk = T = tk and we get

d
dt

dΩ(γk(t))
∣∣∣∣
t=tk
≥ 0.

Moreover, Lemma 3.6 yields
d
dt

dΩ(γk(t))
∣∣∣∣
t=tk
≤ 0.

So,
d
dt

dΩ(γk(t))
∣∣∣∣
t=tk

= 0,

and we have that (3.45) holds true at tk = T .
Step 2
Now, we prove that

1
µεk
≤ C(µ,M′, κ)

[
1 + 4µ

C1

δ2 +
4µ
εk

dΩ(γk(tk))
]
, ∀k ≥ 1, (3.46)
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where C1 = 8µ + 8µ||Dg||2∞ + 2C(µ,M′) + κ(T + 4µK) and the constant C(µ,M′, κ) depends only on µ,
M′ and κ. Indeed, since γ is of class C2 in a neighborhood of tk one has that

γ̈(tk) = − D2
ptH(tk, γ(tk), p(tk)) −

〈
D2

pxH(tk, γ(tk), p(tk)), γ̇(tk)
〉

(3.47)

−
〈
D2

ppH(tk, γ(tk), p(tk)), ṗ(tk)
〉
.

Developing the second order derivative of dΩ ◦ γ, by (3.47) and the expression of the derivatives of γ
and p in Lemma 3.4 one has that

0 ≥
〈
D2dΩ(γ(tk))γ̇(tk), γ̇(tk)

〉
+

〈
DdΩ(γ(tk)), γ̈(tk)

〉
=

〈
D2dΩ(γ(tk))DpH(tk, γ(tk), p(tk)),DpH(tk, γ(tk), p(tk))

〉
−

〈
DdΩ(γ(tk)),D2

ptH(tk, γ(tk), p(tk))
〉

+
〈
DdΩ(γ(tk)),D2

pxH(tk, γ(tk), p(tk))DpH(tk, γ(tk), p(tk))
〉

−
〈
DdΩ(γ(tk)),D2

ppH(tk, γ(tk), p(tk))DxH(tk, γ(tk), p(tk))
〉

+
1
ε

〈
DdΩ(γ(tk)),D2

ppH(tk, γ(tk), p(tk))DdΩ(γ(tk))
〉
.

We now use the growth properties of H in (3.14), and (3.16)-(3.18), the lower bound for D2
ppH in

(3.13), and the regularity of the boundary of Ω to obtain:

1
µεk
≤ C(µ,M′)(1 + |p(tk)|)2 + κC(µ,M′)(1 + |p(tk)|) ≤ C(µ,M′, κ)(1 + |p(tk)|2),

where the constant C(µ,M′, κ) depends only on µ, M′ and κ. By our estimate for p in (3.29) we get:

1
µεk
≤ C(µ,M′, κ)

[
1 + 4µ

C1

δ2 +
4µ
εk

dΩ(γ(tk))
]
, ∀ k ≥ 1,

where C1 = 8µ + 8µ||Dg||2∞ + 2C(µ,M′) + κ(T + 4µK).
Conclusion
Let ρ = min

{
ρ0,

1
32C(µ,M′,κ)µ2

}
. Owing to Lemma 3.3, for all ε ∈ (0, ε(ρ)] we have that

sup
t∈[0,T ]

dΩ(γ(t)) ≤ ρ, ∀γ ∈ Xε,δ[x].

Hence, using (3.46), we deduce that

1
2µεk

≤ 4C(µ,M′, κ)
[
1 + 4µ

C1

δ2

]
.

Since the above inequality fails for k large enough, we conclude that (3.44) cannot hold true. So, γ(t)
belongs to Ω for all t ∈ [0,T ]. �

An obvious consequence of Lemma 3.7 is the following:

Corollary 3.1. Fix δ as in (3.43) and take ε = ε1, where ε1 is defined as in Lemma 3.7. Then an arc
γ(·) is a solution of problem (3.22) if and only if it is also a solution of (3.1).
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We are now ready to complete the proof of Theorem 3.1.

Proof of Theorem 3.1. Let x ∈ Ω and γ? ∈ X[x]. By Corollary 3.1 we have that γ? is a solution of
problem (3.22) with δ as in (3.43) and ε = ε1 as in Lemma 3.7. Let p(·) be the associated adjoint map
such that (γ?(·), p(·)) satisfies (3.26). Moreover, let λ(·) and β be defined as in Lemma 3.4. Define
ν =

β

δ
. Then we have 0 ≤ ν ≤ 1

δ
and, by (3.26),

p(T ) = Dg(γ?(T )) + ν DbΩ(γ?(T )). (3.48)

By Lemma 3.4 γ? ∈ C1,1([0,T ]; Ω) and

γ̇?(t) = −DpH(t, γ?(t), p(t)), ∀ t ∈ [0,T ]. (3.49)

Moreover, p(·) ∈ Lip(0,T ;Rn) and by (3.29) one has that

|p(t)| ≤ 2
√
µC1

δ
, ∀t ∈ [0,T ],

where C1 = 8µ + 8µ||Dg||2∞ + 2C(µ,M′) + κ(T + 4µK). Hence, p is bounded. By (3.49), and by (3.17)
one has that

||γ̇?||∞ = sup
t∈[0,T ]

|DpH(t, γ?(t), p(t))| ≤ C(µ,M′)
(

sup
t∈[0,T ]

|p(t)| + 1
)
≤ C(µ,M′)

(
2
√
µC1

δ
+ 1

))
=L?,

where L? = L?(µ,M′,M, κ,T, ||Dg||∞, ||g||∞). Thus, (3.21) holds
Finally, we want to find an explicit expression for λ(t). For this, we set

D =
{
t ∈ [0,T ] : γ?(t) ∈ ∂Ω

}
and Dρ0 =

{
t ∈ [0,T ] : |bΩ(γ?(t))| < ρ0

}
,

where ρ0 is as in assumption (2.1). Note that ψ(t) := bΩ ◦ γ
? is of class C1,1 on the open set Dρ0 , with

ψ̇(t) =
〈
DbΩ(γ?(t)), γ̇?(t)

〉
=

〈
DbΩ(γ?(t)),−DpH(t, γ?(t), p(t))

〉
.

Since p ∈ Lip(0,T ;Rn), ψ̇ is absolutely continuous on Dρ0 with

ψ̈(t) = −
〈
D2bΩ(γ?(t))γ̇?(t),DpH

(
t, γ?(t), p(t)

)〉
−

〈
DbΩ(γ?(t)),D2

ptH
(
t, γ?(t), p(t)

)〉
−

〈
DbΩ(γ?(t)),D2

pxH
(
t, γ?(t), p(t)

)
γ̇?(t)

〉
−

〈
DbΩ(γ?(t)),D2

ppH
(
t, γ?(t), p(t)

)
ṗ(t)

〉
=

〈
D2bΩ(γ?(t))DpH

(
t, γ?(t), p(t)

)
,DpH

(
t, γ?(t), p(t)

)〉
−

〈
DbΩ(γ?(t)),D2

ptH
(
t, γ?(t), p(t)

)〉
+

〈
DbΩ(γ?(t)),D2

pxH
(
t, γ?(t), p(t)

)
DpH

(
t, γ?(t), p(t)

)〉
−

〈
DbΩ(γ?(t)),D2

ppH
(
t, γ?(t), p(t)

)
DxH

(
t, γ?(t), p(t)

)
〉

+
λ(t)
ε

〈
DbΩ(γ?(t)),D2

ppH
(
t, γ?(t), p(t)

)
DbΩ(γ?(t))

〉
.

Let Nγ? = {t ∈ D ∩ (0,T )| ψ̇(t) , 0}. Let t ∈ Nγ? , then there exists σ > 0 such that γ?(s) < ∂Ω for any
s ∈ ((t − σ, t + σ) \ {t}) ∩ (0,T ). Therefore, Nγ? is composed of isolated points and so it is a discrete
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set. Hence, ψ̇(t) = 0 a.e. t ∈ D ∩ (0,T ). So, ψ̈(t) = 0 a.e. in D, because ψ̇ is absolutely continuous.
Moreover, since D2

ppH(t, x, p) > 0 and |DbΩ(γ?(t))| = 1, we have that〈
DbΩ(γ?(t)),D2

ppH
(
t, γ?(t), p(t)

)
DbΩ(γ?(t))

〉
> 0, a.e. t ∈ Dρ0 .

So, for a.e. t ∈ D, λ(t) is given by

λ(t)
ε

=
1

〈DbΩ(γ?(t)),D2
ppH(t, γ?(t), p(t))DbΩ(γ?(t))〉

[〈
DbΩ(γ?(t)),D2

ptH
(
t, γ?(t), p(t)

)〉
−

〈
D2bΩ(γ?(t))DpH

(
t, γ?(t), p(t)

)
,DpH

(
t, γ?(t), p(t)

)〉
−

〈
DbΩ(γ?(t)),D2

pxH
(
t, γ?(t), p(t)

)
DpH

(
t, γ?(t), p(t)

)〉
+

〈
DbΩ(γ?(t)),D2

ppH
(
t, γ?(t), p(t)

)
DxH

(
t, γ?(t), p(t)

)〉]
.

Since λ(t) = 0 for all t ∈ [0,T ]\D by (3.27), taking Λ(t, γ?(t), p(t)) =
λ(t)
ε

, we obtain the conclusion. �

Remark 3.4. The above proof gives a representation of Λ, i.e., for all (t, x, p) ∈ [0,T ] × Σρ0 × R
n one

has that

Λ(t, x, p) =
1

θ(t, x, p)

[
−

〈
D2bΩ(x)DpH

(
t, x, p

)
,DpH

(
t, x, p

)〉
−

〈
DbΩ(x),D2

ptH
(
t, x, p

)〉
−〈

DbΩ(x),D2
pxH

(
t, x, p

)
DpH

(
t, x, p

)〉
+

〈
DbΩ(x),D2

ppH
(
t, x, p

)
DxH

(
t, x, p

)〉]
,

where θ(t, x, p) := 〈DbΩ(x),D2
ppH(t, x, p)DbΩ(x)〉. Observe that (3.13) ensures that θ(t, x, p) > 0 for all

t ∈ [0,T ], for all x ∈ Σρ0 and for all p ∈ Rn.

3.3. Proof of Theorem 3.1 for general U

We now want to remove the extra assumption U = Rn. For this purpose, it suffices to show that the
data f and g—a priori defined just on U—can be extended to Rn preserving the conditions in (f0)-(f2)
and (g1). So, we proceed to construct such an extension by taking a cut-off function ξ ∈ C∞(R) such
that 

ξ(x) = 0 if x ∈ (−∞, 1
3 ],

0 < ξ(x) < 1 if x ∈ ( 1
3 ,

2
3 ),

ξ = 1 if x ∈ [ 2
3 ,+∞).

(3.50)

Lemma 3.8. Let Ω ⊂ Rn be a bounded open set with C2 boundary. Let U be a open subset of Rn such
that Ω ⊂ U and set

σ0 = dist(Ω,Rn \ U) > 0.

Suppose that f : [0,T ] × U × Rn → R and g : U → R satisfy (f0)-(f2) and (g1), respectively. Set
σ = σ0 ∧ ρ0. Then, the function f admits the extension

f̃ (t, x, v) = ξ

(
bΩ(x)
σ

)
|v|2

2
+

(
1 − ξ

(
bΩ(x)
σ

))
f (t, x, v), ∀ (t, x, v) ∈ [0,T ] × Rn × Rn,
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that satisfies conditions (f0)-(f2) with U = Rn. Moreover, g admits the extension

g̃(x) =

(
1 − ξ

(
bΩ(x)
σ

))
g(x), ∀x ∈ Rn,

that satisfies condition (g1) with U = Rn.

Note that, since Ω is bounded and U is open, the distance between Ω and Rn \ U is positive.

Proof. By construction we note that f̃ ∈ C([0,T ] × Rn × Rn). Moreover, for all t ∈ [0,T ] the function
(x, v) 7−→ f̃ (t, x, v) is differentiable and the map (x, v) 7−→ Dv f̃ (t, x, v) is continuously differentiable by
construction. Furthermore, Dx f̃ , Dv f̃ are continuous on [0,T ] × Rn × Rn and f̃ satisfies (3.2). In order
to prove (3.3) for f̃ , we observe that

Dv f̃ (t, x, v) = ξ

(
bΩ(x)
σ

)
v +

(
1 − ξ

(
bΩ(x)
σ

))
Dv f (t, x, v),

and

D2
vv f̃ (t, x, v) = ξ

(
bΩ(x)
σ

)
I +

(
1 − ξ

(
bΩ(x)
σ

))
D2

vv f (t, x, v).

Hence, by the definition of ξ and (3.3) we obtain that(
1 ∧

1
µ

)
I ≤ D2

vv f̃ (t, x, v) ≤ (1 ∨ µ)I, ∀ (t, x, v) ∈ [0,T ] × Rn × Rn.

Since µ ≥ 1, we have that f̃ verifies the estimate in (3.3).
Moreover, since

Dx(Dv f̃ (t, x, v)) = ξ̇

(
bΩ(x)
σ

)
v ⊗

DbΩ(x)
σ

+

(
1 − ξ

(
bΩ(x)
σ

))
D2

vx f (t, x, v)

− ξ̇

(
bΩ(x)
σ

)
Dv f (t, x, v) ⊗

DbΩ(x)
σ

,

and by (3.4) we obtain that

||D2
vx f̃ (t, x, v)|| ≤ C(µ,M)(1 + |v|) ∀(t, x, v) ∈ [0,T ] × Rn × Rn.

For all (x, v) ∈ Rn × Rn the function t 7−→ f̃ (t, x, v) and the map t 7−→ Dv f̃ (t, x, v) are Lipschitz
continuous by construction. Moreover, by (3.5) and the definition of ξ one has that∣∣∣∣ f̃ (t, x, v) − f̃ (s, x, v)

∣∣∣∣ =

∣∣∣∣∣∣
(
1 − ξ

(
bΩ(x)
σ

)) [
f (t, x, v) − f (s, x, v)

]∣∣∣∣∣∣ ≤ κ(1 + |v|2)|t − s|

for all t, s ∈ [0,T ], x ∈ Rn, v ∈ Rn. Now, we have to prove that (3.6) holds for f̃ . Indeed, using (3.6)
we deduce that∣∣∣Dv f̃ (t, x, v)) − Dv f̃ (s, x, v))

∣∣∣ ≤ ∣∣∣∣∣∣
(
1 − ξ

(
bΩ(x)
σ

)) [
Dv f (t, x, v) − Dv f (s, x, v))

]∣∣∣∣∣∣
≤ κ(1 + |v|)|t − s|,

for all t, s ∈ [0,T ], x ∈ Rn, v ∈ Rn. Therefore, f̃ verifies the assumptions (f0)-(f2).
Finally, by the regularity of bΩ, ξ, and g we have that g̃ is of class C1

b(Rn). This completes the proof. �
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4. Applications of Theorem 3.1

4.1. Lipschitz regularity for constrained minimization problems

Suppose that f : [0,T ] × U × Rn → R and g : U → R satisfy the assumptions (f0)-(f2) and (g1),
respectively. Let (t, x) ∈ [0,T ]×Ω. Define u : [0,T ]×Ω→ R as the value function of the minimization
problem (3.1), i.e.,

u(t, x) = inf
γ ∈ Γ

γ(t) = x

∫ T

t
f (s, γ(s), γ̇(s)) ds + g(γ(T )). (4.1)

Proposition 4.1. Let Ω be a bounded open subset of Rn with C2 boundary. Suppose that f and g satisfy
(f0)-(f2) and (g1), respectively. Then, u is Lipschitz continuous in [0,T ] ×Ω.

Proof. First, we shall prove that u(t, ·) is Lipschitz continuous on Ω, uniformly for t ∈ [0,T ]. Since
u(T, ·) = g, it suffices to consider the case of t ∈ [0,T ). Let x0 ∈ Ω and choose 0 < r < 1 such that
Br(x0) ⊂ B2r(x0) ⊂ B4r(x0) ⊂ Ω. To prove that u(t, ·) is Lipschitz continuous in Br(x0), take x , y in
Br(x0). Let γ be an optimal trajectory for u at (t, x) and let γ be the trajectory defined by

γ(t) = y,

γ̇(s) = γ̇(s) +
x−y
τ

if s ∈ [t, t + τ] a.e.,
γ̇(s) = γ̇(s) otherwise,

where τ =
|x−y|
2L? < T − t. We claim that

(a) γ(t + τ) = γ(t + τ);

(b) γ(s) = γ(s) for any s ∈ [t + τ,T ];

(c) |γ(s) − γ(s)| ≤ |y − x| for any s ∈ [t, t + τ];

(d) γ(s) ∈ Ω for any s ∈ [t,T ].

Indeed, by the definition of γ we have that

γ(t + τ) − γ(t) = γ(t + τ) − y =

∫ t+τ

t

(
γ̇(s) +

x − y
τ

)
ds = γ(t + τ) − y,

and this gives (a). Moreover, by (a), and by the definition of γ one has that γ(s) = γ(s) for any
s ∈ [t + τ,T ]. Hence, γ verifies (b). By the definition of γ, for any s ∈ [t, t + τ] we obtain that∣∣∣∣γ(s) − γ(s)

∣∣∣∣ ≤ ∣∣∣∣y − x +

∫ s

t
(γ̇(σ) − γ̇(σ)) dσ

∣∣∣∣ =
∣∣∣∣y − x +

∫ s

t

x − y
τ

dσ
∣∣∣∣ ≤ |y − x|

and so (c) holds. Since γ is an optimal trajectory for u and by γ(s) = γ(s) for all s ∈ [t + τ,T ], we only
have to prove that γ(s) belongs to Ω for all s ∈ [t, t + τ]. Let s ∈ [t, t + τ], by Theorem 3.1 one has that

|γ(s) − x0| ≤ |γ(s) − y| + |y − x0| ≤

∣∣∣∣∣∫ s

t
γ̇(σ) dσ

∣∣∣∣∣ + r ≤
∫ s

t

∣∣∣∣γ̇(σ) +
x − y
τ

∣∣∣∣ dσ + r
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≤

∫ s

t

[
|γ̇(σ)| +

|x − y|
τ

]
dσ + r ≤ L?(s − t) +

|x − y|
τ

(s − t) + r ≤ L?τ + |x − y| + r.

Recalling that τ =
|x−y|
2L? one has that

|γ(s) − x0| ≤
|x − y|

2
+ |x − y| + r ≤ 4r.

Therefore, γ(s) ∈ B4r(x0) ⊂ Ω for all s ∈ [t, t + τ].
Now, owing to the dynamic programming principle, by (a) one has that

u(t, y) ≤
∫ t+τ

t
f (s, γ(s), γ̇(s)) ds + u(t + τ, γ(t + τ)). (4.2)

Since γ is an optimal trajectory for u at (t, x), we obtain that

u(t, y) ≤ u(t, x) +

∫ t+τ

t

[
f (s, γ(s), γ̇(s)) − f (s, γ(s), γ̇(s))

]
ds.

By (3.7), (3.8), and the definition of γ, for s ∈ [t, t + τ] we have that

| f (s, γ(s), γ̇(s)) − f (s, γ(s), γ̇(s))|

≤ | f (s, γ(s), γ̇(s)) − f (s, γ(s), γ̇(s))| + | f (s, γ(s), γ̇(s)) − f (s, γ(s), γ̇(s))|

≤

∫ 1

0
|〈Dv f (s, γ(s), λγ̇(s) + (1 − λ)γ̇(s)), γ̇(s) − γ̇(s)〉| dλ

+

∫ 1

0
|Dx f (s, λγ(s) + (1 − λ)γ(s), γ̇(s)), γ(s) − γ(s)〉| dλ

≤ C(µ,M)|γ̇(s) − γ̇(s)|
∫ 1

0
(1 + |λγ̇(s) + (1 − λ)γ̇(s)|) dλ

+ C(µ,M)|γ(s) − γ(s)|
∫ 1

0
(1 + |γ̇(s)|2) dλ.

By Theorem 3.1 one has that∫ 1

0
(1 + |λγ̇(s) + (1 − λ)γ̇(s)|) dλ ≤ 1 + 4L?, (4.3)∫ 1

0
(1 + |γ̇(s)|2) dλ ≤ 1 + (L?)2. (4.4)

Using (4.3), (4.4), and (c), by the definition of γ one has that

| f (s, γ(s), γ̇(s)) − f (s, γ(s), γ̇(s))| ≤ C(µ,M)(1 + 4L?)
|x − y|
τ

+ C(µ,M)(1 + (L?)2)|x − y|, (4.5)

for a.e. s ∈ [t, t + τ]. By (4.5), and the choice of τ we deduce that

u(t, y) ≤ u(t, x) + C(µ,M)(1 + 4L?)
∫ t+τ

t

|x − y|
τ

ds + C(µ,M)(1 + (L?)2)
∫ t+τ

t
|x − y| ds
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≤ u(t, x) + C(µ,M)(1 + 4L?)
∣∣∣x − y

∣∣∣ + τC(µ,M)(1 + (L?)2)
∣∣∣x − y

∣∣∣ ≤ u(t, x) + CL? |x − y|

where CL? = C(µ,M)(1+4L?)+ 1
2L?C(µ,M)(1+(L?)2). Thus, u is locally Lipschitz continuous in space

and one has that ||Du||∞ ≤ ϑ, where ϑ is a constant not depending on Ω. Owing to the smoothness of
Ω, u is globally Lipschitz continuous in space, uniformly for t ∈ [0,T ].

In order to prove Lipschitz continuity in time, let x ∈ Ω and fix t1, t2 ∈ [0,T ] with t2 ≥ t1. Let γ be
an optimal trajectory for u at (t1, x). Then,

|u(t2, x) − u(t1, x)| ≤ |u(t2, x) − u(t2, γ(t2))| + |u(t2, γ(t2)) − u(t1, x)|. (4.6)

The first term on the right-side of (4.6) can be estimated using the Lipschitz continuity in space of u
and Theorem 3.1. Thus, we get

|u(t2, x) − u(t2, γ(t2))| ≤ CL? |x − γ(t2)| ≤ CL?

∫ t2

t1
|γ̇(s)| ds ≤ L?CL?(t2 − t1). (4.7)

We only have to estimate the second term on the right-side of (4.6). By the dynamic programming
principle, (3.9), and the assumptions on F we deduce that

|u(t2, γ(t2)) − u(t1, x)| =
∣∣∣∣ ∫ t2

t1
f (s, γ(s), γ̇(s)) ds

∣∣∣∣ ≤ ∫ t2

t1
| f (s, γ(s), γ̇(s))| ds (4.8)

≤

∫ t2

t1

[
C(µ,M) + 4µ|γ̇(s)|2

]
ds ≤

[
C(µ,M) + 4µL?

]
(t2 − t1)

Using (4.7) and (4.8) to bound the right-hand side of (4.6), we obtain that u is Lipschitz continuous in
time. This completes the proof. �

4.2. Lipschitz regularity for constrained MFG equilibria

In this section we want to apply Theorem 3.1 to a mean field game (MFG) problem with state
constraints. Such a problem was studied in [11], where the existence and uniqueness of constrained
equilibria was obtained under fairly general assumptions on the data. Here, we will apply our necessary
conditions to deduce the existence of more regular equilibria than those constructed in [11], assuming
the data F and G to be Lipschitz continuous.
Assumptions

Let Ω be a bounded open subset of Rn with C2 boundary. Let P(Ω) be the set of all Borel probability
measures on Ω endowed with the Kantorovich-Rubinstein distance d1 defined in (2.2). Let U be an
open subset of Rn and such that Ω ⊂ U. Assume that F : U × P(Ω) → R and G : U × P(Ω) → R
satisfy the following hypotheses.

(D1) For all x ∈ U, the functions m 7−→ F(x,m) and m 7−→ G(x,m) are Lipschitz continuous, i.e., there
exists a constant κ ≥ 0 such that

|F(x,m1) − F(x,m2)| + |G(x,m1) −G(x,m2)| ≤ κd1(m1,m2), (4.9)

for any m1, m2 ∈ P(Ω).
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(D2) For all m ∈ P(Ω), the functions x 7−→ G(x,m) and x 7−→ F(x,m) belong to C1
b(U). Moreover

|DxF(x,m)| + |DxG(x,m)| ≤ κ, ∀ x ∈ U, ∀ m ∈ P(Ω).

Let L : U × Rn → R be a function that satisfies the following assumptions.

(L0) L ∈ C1(U × Rn) and there exists a constant M ≥ 0 such that

|L(x, 0)| + |DxL(x, 0)| + |DvL(x, 0)| ≤ M, ∀ x ∈ U. (4.10)

(L1) DvL is differentiable on U × Rn and there exists a constant µ ≥ 1 such that

I
µ
≤ D2

vvL(x, v) ≤ Iµ, (4.11)

||D2
vxL(x, v)|| ≤ µ(1 + |v|), (4.12)

for all (x, v) ∈ U × Rn.

Remark 4.1. (i) F, G and L are assumed to be defined on U × P(Ω) and on U × Rn, respectively, just
for simplicity. All the results of this section hold true if we replace U by Ω. This fact can be easily
checked by using well-known extension techniques (see, e.g. [1, Theorem 4.26]).
(ii) Arguing as Lemma 3.1 we deduce that there exists a positive constant C(µ,M) that dependes only
on M, µ such that

|DxL(x, v)| ≤ C(µ,M)(1 + |v|2), (4.13)
|DvL(x, v)| ≤ C(µ,M)(1 + |v|), (4.14)

|v|2

4µ
−C(µ,M) ≤ L(x, v) ≤ 4µ|v|2 + C(µ,M), (4.15)

for all (x, v) ∈ U × Rn.
Let m ∈ Lip(0,T ;P(Ω)). If we set f (t, x, v) = L(x, v) + F(x,m(t)), then the associated Hamiltonian H
takes the form

H(t, x, p) = HL(x, p) − F(x,m(t)), ∀ (t, x, p) ∈ [0,T ] × U × Rn,

where
HL(x, p) = sup

v∈Rn

{
− 〈p, v〉 − L(x, v)

}
, ∀ (x, p) ∈ U × Rn.

The assumptions on L imply that HL satisfies the following conditions.

1. HL ∈ C1(U × Rn) and there exists a constant M′ ≥ 0 such that

|HL(x, 0)| + |DxHL(x, 0)| + |DpHL(x, 0)| ≤ M′, ∀x ∈ U. (4.16)

2. DpHL is differentiable on U × Rn and satisfies

I
µ
≤ DppHL(x, p) ≤ Iµ, ∀ (x, p) ∈ U × Rn, (4.17)

||D2
pxHL(x, p)|| ≤ C(µ,M′)(1 + |p|), ∀ (x, p) ∈ U × Rn, (4.18)

where µ is the constant in (L1) and C(µ,M′) depends only on µ and M′.
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For any t ∈ [0,T ], we denote by et : Γ→ Ω the evaluation map defined by

et(γ) = γ(t), ∀γ ∈ Γ.

For any η ∈ P(Γ), we define
mη(t) = et]η ∀t ∈ [0,T ].

Remark 4.2. We observe that for any η ∈ P(Γ), the following holds true (see [11] for a proof).

(i) mη ∈ C([0,T ];P(Ω)).

(ii) Let ηi, η ∈ P(Γ), i ≥ 1, be such that ηi is narrowly convergent to η. Then mηi(t) is narrowly
convergent to mη(t) for all t ∈ [0,T ].

For any fixed m0 ∈ P(Ω), we denote by Pm0(Γ) the set of all Borel probability measures η on Γ such
that e0]η = m0. For all η ∈ Pm0(Γ), we set

Jη[γ] =

∫ T

0

[
L(γ(t), γ̇(t)) + F(γ(t),mη(t))

]
dt + G(γ(T ),mη(T )), ∀γ ∈ Γ.

For all x ∈ Ω and η ∈ Pm0(Γ), we define

Γη[x] =
{
γ ∈ Γ[x] : Jη[γ] = min

Γ[x]
Jη

}
.

It is shown in [11] that, for every η ∈ Pm0(Γ), the set Γη[x] is nonempty and Γη[·] has closed graph.
We recall the definition of constrained MFG equilibria for m0, given in [11].

Definition 4.1. Let m0 ∈ P(Ω). We say that η ∈ Pm0(Γ) is a contrained MFG equilibrium for m0 if

supp(η) ⊆
⋃
x∈Ω

Γη[x].

Let Γ′ be a nonempty subset of Γ. We denote by Pm0(Γ
′) the set of all Borel probability measures η on

Γ′ such that e0]η = m0. We now introduce special subfamilies of Pm0(Γ) that play a key role in what
follows.

Definition 4.2. Let Γ′ be a nonempty subset of Γ. We define by PLip
m0 (Γ′) the set of η ∈ Pm0(Γ

′) such that
mη(t) = et]η is Lipschitz continuous, i.e.,

P
Lip
m0 (Γ′) = {η ∈ Pm0(Γ

′) : mη ∈ Lip(0,T ;P(Ω))}.

Remark 4.3. We note that PLip
m0 (Γ) is a nonempty convex set. Indeed, let j : Ω → Γ be the continuous

map defined by
j(x)(t) = x ∀t ∈ [0,T ].

Then,
η := j]m0

is a Borel probability measure on Γ and η ∈ PLip
m0 (Γ).

In order to show that PLip
m0 (Γ) is convex, let {ηi}i=1,2 ⊂ P

Lip
m0 (Γ) and let λ1, λ2 ≥ 0 be such that λ1 +λ2 = 1.
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Since ηi are Borel probability measures, η := λη1 + (1 − λ)η2 is a Borel probability measure as well.
Moreover, for any Borel set B ∈ B(Ω) we have that

e0]η(B) = η(e−1
0 (B)) =

2∑
i=1

λiηi(e−1
0 (B)) =

2∑
i=1

λie0]ηi(B) =

2∑
i=1

λim0(B) = m0(B).

So, η ∈ Pm0(Γ). Since mη1 , mη2 ∈ Lip(0,T ;P(Ω)), we have that mη(t) = λ1mη1(t) + λ2mη2(t) belongs to
Lip(0,T ;P(Ω)).
In the next result, we apply Theorem 3.1 to prove a useful property of minimizers of Jη.

Proposition 4.2. Let Ω be a bounded open subset of Rn with C2 boundary and let m0 ∈ P(Ω). Suppose
that (L0), (L1), (D1), and (D2) hold true. Let η ∈ PLip

m0 (Γ) and fix x ∈ Ω. Then Γη[x] ⊂ C1,1([0,T ];Rn)
and

||γ̇||∞ ≤ L0, ∀γ ∈ Γη[x], (4.19)

where L0 = L0(µ,M′,M, κ,T, ||G||∞, ||DG||∞).

Proof. Let η ∈ PLip
m0 (Γ), x ∈ Ω and γ ∈ Γη[x]. Since m ∈ Lip(0,T ;P(Ω)), taking f (t, x, v) = L(x, v) +

F(x,m(t)), one can easly check that all the assumptions of Theorem 3.1 are satisfied by f and G.
Therefore, we have that Γη[x] ⊂ C1,1([0,T ];Rn) and, in this case, (3.21) becomes

||γ̇||∞ ≤ L0, ∀γ ∈ Γη[x],

where L0 = L0(µ,M′,M, κ,T, ||G||∞, ||DG||∞). �

We denote by ΓL0 the set of γ ∈ Γ such that (4.19) holds, i.e.,

ΓL0 = {γ ∈ Γ : ||γ̇||∞ ≤ L0}. (4.20)

Lemma 4.1. Let m0 ∈ P(Ω). Then, PLip
m0 (ΓL0) is a nonempty convex compact subset of Pm0(Γ).

Moreover, for every η ∈ Pm0(ΓL0), mη(t) := et]η is Lipschitz continuous of constant L0, where L0 is as
in Proposition 4.2.

Proof. Arguing as in Remark 4.3, we obtain that PLip
m0 (ΓL0) is a nonempty convex set. Moreover, since

ΓL0 is compactly embedded in Γ, one has that PLip
m0 (ΓL0) is compact.

Let η ∈ Pm0(ΓL0) and mη(t) = et]η. For any t1, t2 ∈ [0,T ], we recall that

d1(mη(t2),mη(t1)) = sup
{ ∫

Ω

φ(x)(mη(t2, dx) − mη(t1, dx))
∣∣∣∣ φ : Ω→ R is 1-Lipschitz

}
.

Since φ is 1-Lipschitz continuous, one has that∫
Ω

φ(x) (mη(t2, dx) − mη(t1, dx)) =

∫
Γ

[
φ(et2(γ)) − φ(et1(γ))

]
dη(γ)

=

∫
Γ

[
φ(γ(t2)) − φ(γ(t1))

]
dη(γ) ≤

∫
Γ

|γ(t2) − γ(t1)| dη(γ).

Since η ∈ Pm0(ΓL0), we deduce that∫
Γ

|γ(t2) − γ(t1)| dη(γ) ≤ L0

∫
Γ

|t2 − t1| dη(γ) = L0|t2 − t1|

and so mη(t) is Lipschitz continuous of constant L0. �
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In the next result, we deduce the existence of more regular equilibria than those constructed in [11].

Theorem 4.1. Let Ω be a bounded open subset of Rn with C2 boundary and m0 ∈ P(Ω). Suppose
that (L0), (L1), (D1), and (D2) hold true. Then, there exists at least one constrained MFG equilibrium
η ∈ P

Lip
m0 (Γ).

Proof. First of all, we recall that for any η ∈ PLip
m0 (Γ), there exists a unique Borel measurable family ∗

of probabilities {ηx}x∈Ω on Γ which disintegrates η in the sense thatη(dγ) =
∫

Ω
ηx(dγ)m0( dx),

supp(ηx) ⊂ Γ[x] m0 − a.e. x ∈ Ω
(4.21)

(see, e.g., [2, Theorem 5.3.1]). Proceeding as in [11], we introduce the set-valued map

E : Pm0(Γ)⇒ Pm0(Γ),

by defining, for any η ∈ Pm0(Γ),

E(η) =
{̂
η ∈ Pm0(Γ) : supp(̂ηx) ⊆ Γη[x] m0 − a.e. x ∈ Ω

}
. (4.22)

We recall that, by [11, Lemma 3.6], the map E has closed graph.
Now, we consider the restriction E0 of E to PLip

m0 (Γ), i.e.,

E0 : PLip
m0 (ΓL0)⇒ Pm0(Γ), E0(η) = E(η) ∀η ∈ PLip

m0 (ΓL0).

We will show that the set-valued map E0 has a fixed point, i.e., there exists η ∈ PLip
m0 (ΓL0) such that

η ∈ E0(η). By [11, Lemma 3.5] we have that for any η ∈ PLip
m0 (ΓL0), E0(η) is a nonempty convex set.

Moreover, we have that
E0(PLip

m0 (ΓL0)) ⊆ P
Lip
m0 (ΓL0). (4.23)

Indeed, let η ∈ PLip
m0 (ΓL0) and η̂ ∈ E0(η). Since, by Proposition 4.2 one has that

Γη[x] ⊂ ΓL0 ∀x ∈ Ω,

and by definition of E0 we deduce that
supp(̂η) ⊂ ΓL0 .

So, η̂ ∈ Pm0(ΓL0). By Lemma 4.1, η̂ ∈ PLip
m0 (ΓL0).

Since E has closed graph, by Lemma 4.1 and (4.23) we have that E0 has closed graph as well. Then,
the assumptions of Kakutani’s Theorem [30] are satisfied and so, there exists η ∈ PLip

m0 (ΓL0) such that
η ∈ E0(η). �

We recall the definition of a mild solution of the constrained MFG problem, given in [11].

Definition 4.3. We say that (u,m) ∈ C([0,T ]×Ω)×C([0,T ];P(Ω)) is a mild solution of the constrained
MFG problem in Ω if there exists a constrained MFG equilibrium η ∈ Pm0(Γ) such that

(i) m(t) = et]η for all t ∈ [0,T ];
∗We say that {ηx}x∈Ω is a Borel family (of probability measures) if x ∈ Ω 7−→ ηx(B) ∈ R is Borel for any Borel set B ⊂ Γ.
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(ii) u is given by

u(t, x) = inf
γ ∈ Γ

γ(t) = x

{∫ T

t

[
L(γ(s), γ̇(s)) + F(γ(s),m(s))

]
ds + G(γ(T ),m(T ))

}
, (4.24)

for (t, x) ∈ [0,T ] ×Ω.

Theorem 4.2. Let Ω be a bounded open subset of Rn with C2 boundary. Suppose that (L0),(L1), (D1)
and (D2) hold true. There exists at least one mild solution (u,m) of the constrained MFG problem in
Ω. Moreover,

(i) u is Lipschitz continuous in [0,T ] ×Ω;

(ii) m ∈ Lip(0,T ;P(Ω)) and Lip(m) = L0, where L0 is the constant in (4.19).

The question of the Lipschitz continuity up to the boundary of the value function under state
constraints was addressed in [28] and [34], for stationary problems, and in a very large literature that
has been published since. We refer to the survey paper [20] for references.

Proof. Let m0 ∈ P(Ω) and let η ∈ PLip
m0 (Γ) be a constrained MFG equilibrium for m0. Then, by Theorem

4.1 there exists at least one mild solution (u,m) of the constrained MFG problem in Ω. Moreover, by
Theorem 4.1 one has that m ∈ Lip(0,T ;P(Ω)) and Lip(m) = L0, where L0 is the constant in (4.19).
Finally, by Proposition 4.1 we conclude that u is Lipschitz continuous in (0,T ) ×Ω. �

Remark 4.4. Recall that F : U × P(Ω)→ R is strictly monotone if∫
Ω

(F(x,m1) − F(x,m2))d(m1 − m2)(x) ≥ 0, (4.25)

for any m1,m2 ∈ P(Ω), and
∫

Ω
(F(x,m1)−F(x,m2))d(m1−m2)(x) = 0 if and only if F(x,m1) = F(x,m2)

for all x ∈ Ω.
Suppose that F and G satisfy (4.25). Let η1, η2 ∈ P

Lip
m0 (Γ) be constrained MFG equilibria and let Jη1

and Jη2 be the associated functionals, respectively. Then Jη1 is equal to Jη2 . Consequently, if (u1,m1),
(u2,m2) are mild solutions of the constrained MFG problem in Ω, then u1 = u2 (see [11] for a proof).

5. Appendix

In this Appendix we prove Lemma 2.1. The only case which needs to be analyzed is when x ∈ ∂Ω.
We recall that p ∈ ∂pdΩ(x) if and only if there exists ε > 0 such that

dΩ(y) − dΩ(x) − 〈p, y − x〉 ≥ C|y − x|2, for any y such that |y − x| ≤ ε, (5.1)

for some constant C ≥ 0. Let us show that ∂pdΩ(x) = DbΩ(x)[0, 1]. By the regularity of bΩ, one has
that

dΩ(y) − dΩ(x) − 〈DbΩ(x), y − x〉 ≥ bΩ(y) − bΩ(x) − 〈DbΩ(x), y − x〉 ≥ C|y − x|2.

This shows that DbΩ(x) ∈ ∂pdΩ(x). Moreover, since

dΩ(y) − dΩ(x) − 〈λDbΩ(x), y − x〉 ≥ λ (dΩ(y) − dΩ(x) − 〈DbΩ(x), y − x〉) ∀λ ∈ [0, 1],
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we further obtain the inclusion
DbΩ(x)[0, 1] ⊂ ∂dΩ(x).

Next, in order to show the reverse inclusion, let p ∈ ∂pdΩ(x) \ {0} and let y ∈ Ωc. Then, we can rewrite
(5.1) as

bΩ(y) − bΩ(x) − 〈p, y − x〉 ≥ C|y − x|2, |y − x| ≤ ε. (5.2)

Since y ∈ Ωc, by the regularity of bΩ one has that

bΩ(y) − bΩ(x) ≤ 〈DbΩ(x), y − x〉 + C|y − x|2 (5.3)

for some constant C ∈ R. By (5.2) and (5.3) one has that〈
DbΩ(x) − p,

y − x
|y − x|

〉
≥ C|y − x|.

Hence, passing to the limit for y→ x, we have that

〈DbΩ(x) − p, v〉 ≥ 0, ∀v ∈ TΩc(x),

where TΩc(x) is the contingent cone to Ωc at x ( see e.g. [35] for a definition). Therefore, by the
regularity of ∂Ω,

DbΩ(x) − p = λv(x),

where λ ≥ 0 and v(x) is the exterior unit normal vector to ∂Ω in x. Since v(x) = DbΩ(x), we have that

p = (1 − λ)DbΩ(x).

Now, we prove that λ ≤ 1. Suppose that y ∈ Ω, then, by (5.1) one has that

0 = dΩ(y) ≥ (1 − λ)〈DbΩ(x), y − x〉 + C|y − x|2.

Hence,

(1 − λ)
〈
DbΩ(x),

y − x
|y − x|

〉
≤ −C|y − x|.

Passing to the limit for y→ x, we obtain

(1 − λ) 〈DbΩ(x),w〉 ≤ 0, ∀w ∈ TΩ(x),

where TΩ(x) is the contingent cone to Ω at x. We now claim that λ ≤ 1. If λ > 1, then 〈DbΩ(x),w〉 ≥ 0
for all w ∈ TΩ(x) but this is impossible since DbΩ(x) is the exterior unit normal vector to ∂Ω in x.
Using the regularity of bΩ, simple limit-taking procedures permit us to prove that
∂dΩ(x) = DbΩ(x)[0, 1] when x ∈ ∂Ω. This completes the proof of Lemma 2.1.
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