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Abstract: We derive necessary optimality conditions for minimizers of regular functionals in the
calculus of variations under smooth state constraints. In the literature, this classical problem is widely
investigated. The novelty of our result lies in the fact that the presence of state constraints enters the
Euler-Lagrange equations as a local feedback, which allows to derive the C'!-smoothness of solutions.
As an application, we discuss a constrained Mean Field Games problem, for which our optimality
conditions allow to construct Lipschitz relaxed solutions, thus improving an existence result due to the
first two authors.
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1. Introduction

The centrality of necessary conditions in optimal control is well-known and has originated an
immense literature in the fields of optimization and nonsmooth analysis, see, e.g.,
[3, 16, 17, 29, 33, 35].

In control theory, the celebrated Pontryagin Maximum Principle plays the role of the classical
Euler-Lagrange equations in the calculus of variations. In the case of unrestricted state space, such
conditions provide Lagrange multipliers—the so-called co-states—in the form of solutions to a
suitable adjoint system satisfying a certain transversality condition. Among various applications of
necessary optimality conditions is the deduction of further regularity properties for minimizers which,
a priori, would just be absolutely continuous.
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When state constraints are present, a large body of results provide adaptations of the Pontryagin
Principle by introducing appropriate corrections in the adjoint system. The price to pay for such
extensions usually consists of reduced regularity for optimal trajectories which, due to constraint
reactions, turn out to be just Lipschitz continuous while the associated co-states are of bounded
variation, see [20].

The maximum principle under state constraints was first established by Dubovitskii and Milyutin
[17] (see also the monograph [35] for different forms of such a result). It may happen that the
maximum principle is degenerate and does not yield much information (abnormal maximum
principle). As explained in [8, 10, 18, 19] in various contexts, the so-called “inward pointing
condition” generally ensures the normality of the maximum principle under state constraints. In our
setting (calculus of variation problem, with constraints on positions but not on velocities), this will
never be an issue. The maximum principle under state constraints generally involves an adjoint state
which is the sum of a W!! map and a map of bounded variation. This latter mapping may be very
irregular and have infinitely many jumps [32], which allows for discontinuities in optimal controls.
However, under suitable assumptions (requiring regularity of the data and the affine dynamics with
respect to controls), it has been shown that optimal controls and the corresponding adjoint states are
continuous, and even Lipschitz continuous: see the seminal work by Hager [22] (in the convex
setting) and the subsequent contributions by Malanowski [31] and Galbraith and Vinter [21] (in much
more general frameworks). Generalization to less smooth frameworks can also be found in [9, 18].
Let Q C R" be a bounded open domain with C? boundary. Let I' be the metric subspace of
AC(0,T;R") defined by

[={y€ACO.T:R"): y(t) € Q, Yt€[0,T1},

with the uniform metric. For any x € 5, we set
Ilx] ={y eT": y(0) = x}.

We consider the problem of minimizing the classical functional of the calculus of variations

T
J[7]=j; J@, v, y®) dt + g(y(T)).

Let U c R”" be an open set such that Qc U. Givenx € ﬁ, we consider the constrained minimization
problem
T
inf Jiyl, where Jlyl= f Fy@). 7@0) dt + g(1(T)), (1.1)
0

yel'[x

where f : [0,T] X U XR" - Rand g : U — R . In this paper, we obtain a certain formulation of
the necessary optimality conditions for the above problem, which are particularly useful to study the
regularity of minimizers. More precisely, given a minimizer y* € I'[x] of (1.1), we prove that there
exists a Lipschitz continuous arc p : [0, T] — R” such that

{y'*(t) = —D,H(t,y*(1), p(1)) for all ¢ € [0, T] 12

p@) = DH(t,y*(1), p(t)) — At,v*, p)loa(y*)Dbo(y*(t)) fora.e.t€[0,T]
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where A is a bounded continuous function independent of y* and p (Theorem 3.1). By the above
necessary conditions we derive a sort of maximal regularity, showing that any solutions y* is of class
C"!. As is customary in this kind of problems, the proof relies on the analysis of suitable penalized
functional which has the following form:

T 1 1
inf { fo [f(t, (0, ¥(1) + - dg(y(t))] dt + 5 do(y(T)) + g(y(T))}.

y € AC(0,T;R")
(0) = x
Then, we show that all solutions of the penalized problem remain in Q (Lemma3.7).

A direct consequence of our necessary conditions is the Lipschitz regularity of the value function
associated to (1.1) (Proposition 4.1).

Our interest is also motivated by application to mean field games, as we explain below. Mean field
games (MFG) theory has been developed simultaneously by Lasry and Lions ([25, 26, 27]) and by
Huang, Malhamé and Caines ([23, 24]) in order to study differential games with an infinite number of
rational players in competition. The simplest MFG model leads to systems of partial differential
equations involving two unknown functions: the value function u of an optimal control problem of a
typical player and the density m of the population of players. In the presence of state constraints, the
usual construction of solutions to the MFG system has to be completely revised because the
minimizers of the problem lack many of the good properties of the unconstrained case. Such
constructions are discussed in detail in [11], where a relaxed notion of solution to the constrained
MFG problem was introduced following the so-called Lagrangian formulation (see [4, 5, 6, 7, 13, 14].
In this paper, applying our necessary conditions, we deduce the existence of more regular solutions
than those constructed in [11], assuming data to be Lipschitz continuous.

This paper is organised as follows. In Section 2, we introduce the notation and recall preliminary
results. In Section 3, we derive necessary conditions for the constrained problem. Moreover, we prove
the C'!-smoothness of minimizers. In Section 4, we apply our necessary conditions to obtain the
Lipschitz regularity of the value function for the constrained problem. Furthermore, we deduce the
existence of more regular constrained MFG equilibria. Finally, in the Appendix, we prove a technical
result on limiting subdifferentials.

2. Preliminaries
Throughout this paper we denote by |- | and (-) , respectively, the Euclidean norm and scalar product
in R". Let A € R™" be a matrix. We denote by || - || the norm of A defined as follows

lAll = max ||Ax]|.
xeR”, |x|=1

For any subset S c R”, S stands for its closure, 4S for its boundary, and S¢ for R"” \ §. We denote by
15 : R" — {0, 1} the characteristic function of S, i.e.,

1 x €S,
L5 = 0 xeSe¢

We write AC(0,T;R") for the space of all absolutely continuous R"-valued functions on [0, T],
equipped with the uniform norm ||yllc = supy 7 [y(9)]. We observe that AC(0, T; R") is not a Banach
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space.
Let U be an open subset of R". C(U) is the space of all continuous functions on U and C,(U) is the
space of all bounded continuous functions on U. C*(U) is the space of all functions ¢ : U — R that
are k-times continuously differentiable. Let ¢ € C'(U). The gradient vector of ¢ is denoted by
D¢ = (D, ¢, - ,D, @), where D,.¢ = (?—x Let ¢ € CK(U) and let @ = (a, -+ ,@,) € N" be a
multiindex. We define D¢ = D! --- D{"¢. C(U) is the space of all function ¢ € C*(U) and such that

[Pllk.co == sup [D¢(x)| < oo

xelU
lol <k

Let Q be a bounded open subset of R” with C? boundary. C LI(Q) is the space of all the functions C! in
a neighborhood U of 2 and with locally Lipschitz continuous first order derivates in U.
The distance function from Q is the function dg : R" — [0, +oo[ defined by

do(x):=inf|x —y| (xeR").
yeQ

We define the oriented boundary distance from 9Q by
ba(x) = do(x) — dac(x) (x € R").
We recall that, since the boundary of Q is of class C?, there exists po > 0 such that
ba() € C} on X, ={y € B(x.po) : x € 0Q}. 2.1)

Throughout the paper, we suppose that p, is fixed so that (2.1) holds.
Take a continuous function f : R” — R and a point x € R". A vector p € R" is said to be a proximal
subgradient of f at x if there exists € > 0 and C > 0 such that

p-(y—x) < f(y) = f(x) + Cly — x|* for all y that satisfy [y — x| < €.

The set of all proximal subgradients of f at x is called the proximal subdifferential of f at x and
is denoted by 97 f(x). A vector p € R”" is said to be a limiting subgradient of f at x if there exist
sequences x; € R", p; € 07 f(x;) such that x; — xand p; = p (i = ).

The set of all limiting subgradients of f at x is called the limiting subdifferential and is denoted by
Jf(x). In particular, for the distance function we have the following result.

Lemma 2.1. Let Q be a bounded open subset of R" with C* boundary. Then, for every x € R" it holds

Dbq(x) 0 < bo(x) < po,
07do(x) = ddg(x) = { Dba(x)[0,1] x € 0Q,
0 x € Q,

where pg is as in (2.1) and Dbq(x)[0, 1] denotes the set {Dbq(x)a : «a € [0, 1]}.

The proof is given in the Appendix.
Let X be a separable metric space. C,(X) is the space of all bounded continuous functions on X. We
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denote by A(X) the family of the Borel subset of X and by P(X) the family of all Borel probability
measures on X. The support of n € P(X), supp(n), is the closed set defined by

supp(n) = {x € X : n(V) > 0 for each neighborhood V of x}.

We say that a sequence (17;) C P(X) is narrowly convergent to n € P(X) if

tim [ f0dneo = [ fady vr e Cion,
= Jx X

We denote by d; the Kantorovich-Rubinstein distance on X, which—when X is compact—can be
characterized as follows

di(m,m’) = sup{ ff(x) dm(x) — ff(x) dm’(x) ‘ f:X—>Ris 1—Lipschitz}, (2.2)
X X

for all m,m" € P(X). _
Let Q2 be a bounded open subset of R" with C? boundary. We write Lip(0, T; P()) for the space of all
maps m : [0, T] — P(Q) that are Lipschitz continuous with respect to dy, i.e.,

di(m(t),m(s)) < Clt—s|, Vt,s€[0,T], (2.3)

for some constant C > 0. We denote by Lip(m) the smallest constant that verifies (2.3).

3. Necessary conditions and smoothness of minimizers

3.1. Assumptions and main result

Let Q ¢ R” be a bounded open set with C? boundary. Let I" be the metric subspace of AC(0, T; R")
defined by
r= {y € AC(0,T;R") : y(t) € Q, Vi€ [0, T]}.

For any x € ﬁ, we set
[[x] ={y eI :y(0) = x}.

Let U c R” be an open set such that Qc U. Givenx € ﬁ, we consider the constrained minimization
problem

yel'lx

T
inf JIyl, where Jly] = | f S y(0).70) di + gO(T))}. 3.1
0

We denote by X[x] the set of solutions of (3.1), that is

X0x] = {y* €TLx] : Jly*] = inf JIy1}.
We assume that f : [0,7] X U X R" - Rand g : U — R satisfy the following conditions.
(g1) g€ C,(U)
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(f0) f € C([0,T] x U x R") and for all ¢t € [0,T] the function (x,v) +— f(t, x,v) is differentiable.
Moreover, D, f, D, f are continuous on [0, 7] X U X R" and there exists a constant M > 0 such
that

Lf(t, x,0)| + |D.f(t, x,0)| + D, f(t,x,0)| <M V (t,x) € [0,T] x U. (3.2)

(f1) For all ¢t € [0, T] the map (x,v) — D, f(t, x,v) is continuously differentiable and there exists a

constant 4 > 1 such that

/é < D> f(t,x,v) < Iy, (3.3)
1D}, f(t, x, I < p(1 + V), (3.4)

for all (¢, x,v) € [0,T] x U X R", where I denotes the identity matrix.

(f2) For all (x,v) € U x R" the function t — f(¢, x,v) and the map t — D, f(t, x, v) are Lipschitz
continuous. Moreover, there exists a constant ¥ > 0 such that

lf(t, x,v) — f(s,x,v)| < k(1 + |v|2)|t — s 3.5
|D,f(t,x,v) — D, f(s,x,v)] < k(1 + V]|t — s| (3.6)

forallz, s€[0,T],xe U,veR"
Remark 3.1. By classical results in the calculus of variation (see, e.g., [15, Theorem 11.1i]), there
exists at least one minimizer of (3.1) in I for any fixed point x € Q.
In the next lemma we show that (fO)-(f2) imply the useful growth conditions for f and for its

derivatives.

Lemma 3.1. Suppose that (f0)-(f2) hold. Then, there exists a positive constant C(u, M) depending only
on u and M such that

D, f(z, x,v)] < C(u, M)(1 +|v]), (3.7
D, f(t, x,v)| < C(u, M)(1 + ), (3.8)
iw —C(u, M) < f(t,x,v) < 4up* + C(u, M), (3.9)

forall (t,x,v) € [0, T] x U XR".
Proof. By (3.2), and by (3.3) one has that

|va(t’ X, V)l S |va(t7 X, V) - va(t’ X, O)l + |va(t7 X, O)l
1
< f D% £t x, Tv)| vl dT + D, (2, x,0)] < plv| + M < C(u, M)(1 + V)
0

and so (3.7) holds. Furthermore, by (3.2), and by (3.4) we have that
1
D f(1, %, )| <D f(1, X, v) = Dy f(1, X, 0)| + D, f (2, x,0)| < f D2, f@. x, Tv)| v dT + M
0
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< u(l + WP+ M < C(u, MY(1 + v]?).

Therefore, (3.8) holds. Moreover, fixed v € R” there exists a point & of the segment with endpoints 0,
v such that

1
f(t,x,v) = f(t,x,0) + (D, f(t, x,0),v) + §<D5Vf(t’ X, €, v).
By (3.2), (3.3), and by (3.7) we have that
1 1
= C M) + =l < =M = Cu M+ = < f(t.xv) < M+ Clu, M) + %‘MZ
u u
< C(u, M) + 4ull’,
and so (3.9) holds. This completes the proof. O

In the next result we show a special property of the minimizers of (3.1).

Lemma 3.2. For any x € Q and for any y* € X[x] we have that

|
f —y* (1) dt < K,
o 4u

where
K :=T(C(u, M) + M) + 2 max [g(x). (3.10)

Proof. Let x € Qand let y* € X[x]. By comparing the cost of y* with the cost of the constant trajectory
v*(t) = x, one has that

T T
fo f&,y @), 7*(@®)dt + g(y*(T)) < fo f(t,x,0)dr + g(x) (3.11)
<T max_ |f(z, x,0) + max lg ().

Using (3.2) and (3.9) in (3.11), one has that

|
f —y* @) dt < K,
o 4u

where
K :=T(C(u, M) + M) + 2 max [g(x).

We denote by H : [0,T] x U X R" — R the Hamiltonian

H(t,x,p) =sup{ - (p.v) = f(t.x,v)|, ¥ (t.x,p)€[0,TIx U XR".

veR"

Our assumptions on f imply that H satisfies the following conditions.
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(HO) H € C([0,T] x U x R") and for all ¢ € [0, T] the function (x, p) — H(t, x, p) is differentiable.
Moreover, D, H, D,H are continuous on [0, 7] X U X R" and there exists a constant M’ > 0 such
that

|H(t,x,0)| + [DH(t, x,0)| + |D,H(t,x,0)| < M" ¥ (t,x) € [0, T] x U. (3.12)

(H1) For all ¢ € [0, T] the map (x, p) — D,H(t, x, p) is continuously differentiable and

I
e D} H(1,x,p) < Iu, (3.13)
1Dy, H (2, x, p)ll < Clu, MO + [pl), (3.14)

for all (¢, x, p) € [0, T] x U X R", where u is the constant given in (f1) and C(u, M") depends only
on y and M.

(H2) For all (x, p) € U x R" the function t — H(t, x, p) and the map ¢ — D,H(t, x, p) are Lipschitz
continuous. Moreover

\H(t, x, p) — H(s, x, p)| < kC(u, M')(1 + |pP)It = sl, (3.15)
\D,H(t, x, p) — D,H(s, x, p)| < kC(u, M')(1 + |p])lt — s, (3.16)

forallz, s € [0,T], x € U, p € R", where « is the constant given in (f2) and C(u, M") depends
only on y and M’.

Remark 3.2. Arguing as in Lemma 3.1 we deduce that

D, H, x, p)| < Clus ML+ [, 3.17)
\DLH(, x, p)| < Clu, M1 + [pP), (3.18)
ilpﬁ _ Clu, M') < Ht, x, p) < 4ulpl? + Clu, M), (3.19)

for all (¢, x,p) € [0,T] x U x R" and C(u, M") depends only on p and M’.

Under the above assumptions on €, f and g our necessary conditions can be stated as follows.
Theorem 3.1. For any x € Q and any y* € X[x] the following holds true.

(i) y* is of class C*'([0,T1]; Q).

(ii) There exist:

(a) a Lipschitz continuous arc p : [0,T] — R”,
(b) a constant v € R such that

0<v< max{l, 2u sup ‘DPH(T, X, Dg(x))‘} ,

xeU

which satisfy the adjoint system

{y* =-D,H(t,v*, p) forallt €[0,T], (3.20)

p = D.H(t,y*, p) — A(t,v*, p)laa(y*)Dbo(y*) fora.e. t € [0,T],
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and the transversality condition

p(T) = Dg(y*(T)) + vDba(y* (T)1sa(y*(T)),
where A : [0,T] X Z,) X R" — R is a bounded continuous function independent of y* and p.
Moreover,

(iii) the following estimate holds
IV e < L*, Yy* € X[x], (3.21)

where L* = L*(u, M', M, k, T, || Dg|c, 1€l]c0)-
The (feedback) function A in (3.20) can be computed explicitly, see Remark 3.4 below.

3.2. Proof of Theorem 3.1 for U = R"

In this section, we prove Theorem 3.1 in the special case of U = R". The proof for a general open
set U will be given in the next section.

The proof is based on [12, Theorem 2.1] where the Maximum Principle under state constraints is
obtained for a Mayer problem. The reasoning requires several intermediate steps.
Fix x € Q. The key point is to approximate the constrained problem by penalized problems as follows

y € AC(0,T;R")
y(0) =x

T 1 1
inf { fo [f(t, y(0), ¥(1) + . dg(y(t))] dt + 3 do(y(T)) + g(y(T))}. (3.22)

Then, we will show that, for € > 0 and 6 € (0, 1] small enough, the solutions of the penalized problem
remain in Q.
Observe that the Hamiltonian associated with the penalized problem is given by
1 1
HE(t, X, p) = Sup{ - <p? V> - f(ta X, V) - g dQ(X)} = H(ta X, p) - Z dQ(X), (323)
veR"

for all (¢, x, p) € [0, T] X R" X R".

By classical results in the calculus of variation (see, e.g., [15, Section 11.2]), there exists at least one
mimimizer of (3.22) in AC(0, T; R") for any fixed initial point x € Q. We denote by X.s[x] the set of
solutions of (3.22).

Remark 3.3. Arguing as in Lemma 3.2 we have that, for any x € Q, all y € X eslx] satisfy

T 1 1
f [4—I"y(t)|2 + - dg(y(t))] dt < K, (3.24)
0o M €

where K is the constant given in (3.10).

The first step of the proof consists in showing that the solutions of the penalized problem remain in a
neighborhood of Q.

Lemma 3.3. Let py be such that (2.1) holds. For any p € (0, py), there exists €(0) > 0 such that for all
€ € (0,€e(p)] and all 6 € (0, 1] we have that

VxeQ, yeXlx] = sup do(y(n) <p. (3.25)
t€[0,T]
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Proof. We argue by contradiction. Assume that, for some p > 0, there exist sequences {&}, {0x}, {#},
{x¢} and {y,} such that

&l0,0,>0,1t,€]0,T], x4 € Q, Vi € X5, %] and do(yi(te)) > p, forall k > 1.

By Remark 3.3, one has that for all k > 1

T 1 1
f [4_|7k(t)|2 + = do(y(®)] dt < K,
0 M €k

where K is the constant given in (3.10). The above inequality implies that y; is 1/2—Hodlder continuous
with Holder constant (4uK)!/2. Then, by the Lipschitz continuity of do and the regularity of y;, we
have that

do(yi(t)) — da(yi(s)) < (4uK)'P|y — 5%, s €[0,T1.
Since dq(yi(t:)) > p, one has that

do(yi(s)) > p — GuK)'|t, — 5|'/>.

s
16K *

Hence, do(yi(s)) > p/2 for all s € J = [t = t2r. t; + 1] N [0.T] and all k > 1. So,

3

1 (7 1 1 p
K>— [ don@®))dt > — | da(yi(t)dt > — :
€ Jo € Ji € 32uK

But the above inequality contradicts the fact that €, | 0. So, (3.25) holds true. |

In the next lemma, we show the necessary conditions for the minimizers of the penalized problem.

Lemma 3.4. Let p € (0, p0] and let € € (0, €(p)], where €(p) is given by Lemma 3.3. Fix 6 € (0, 1], let
xo € Q, and let y € X s[x0). Then,

(i) v is of class CH1([0, TT; R™);

(ii) there exists an arc p € Lip(0,T;R"), a measurable map A : [0,T] — [0, 1], and a constant
B € [0, 1] such that

¥(1) = =D,H(t,y(1), p(1)), forallt€[0,T],
p(t) = D H(t,y(t), p(t)) — @ Dbqg(y(t)), fora.e. t<€[0,T], (3.26)
p(T) = Dg(y(T)) + § Dbo(y(T)),
where
{0y ify() e,
A(t) € {1} if 0 < dq(y(1)) < p, (3.27)
[0, 1] if y(¢) € 0Q,
and

0y ify(T) e,
Be{l} if 0<do(y()) <p, (3.28)
[0,1] if ¥(T) € 0Q.
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Moreover;
(iii) the function
(1) == H(t,y(1), p(1) - é do(y(1), Vre[0,T]
belongs to AC(0, T; R) and satisfies

T
f i) dt < k(T + 4uK),
0

where K is the constant given in (3.10) and u, k are the constants in (3.5) and (3.9), respectively;

(iv) the following estimate holds
) 1 C
PO < 4| —daly®) + = |, V1 €[0.T], (3.29)

where Cy = 8u + 8u||Dgl|%, + 2C(u, M") + k(T + 4uK).

Proof. In order to use the Maximum Principle in the version of [35, Theorem 8.7.1], we rewrite (3.22)
as a Mayer problem in a higher dimensional state space. Define X(7) € R" X R as

v(t))

X() = (z o

where z(1) = fot [f(s, y(s), ¥(s)) + % da(y(s))] ds. Then the state equation becomes

¥(0)
(1)

— X0
wo-[%)

ﬁ(t,X,u):( “ )

X(t) = ( ) = Fe(t, X(D), u(t)),

where

L(t,x,u)

and L.(t, x,u) = f(t,x,u) + é do(x) for X = (x,z) and (¢, x,z,u) € [0,T] X R* X R x R". Thus, (3.22)
can be written as
min {@(X*(T)) : u € L'}, (3.30)

where ®(X) = g(x)+ }5 do(x)+zforany X = (x,z) € R"xR. The associated unmaximized Hamiltonian
is given by

H(t, X, P,u) = —(P, F(t, X, u)), V(t, X, P,u) € [0, T] x R™! x R™! x R”,

We observe that, as y(:) is minimizer for (3.22), X is minimizer for (3.30). Hence, the hypotheses
of [35, Theorem 8.7.1] are satisfied. It follows that there exist P(-) = (p(-),b(-)) € AC(0, T;R"),
r(-) € AC(0,T;R), and Ay > O such that
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(@) (P, ) £ (0,0),
(i) (1), P(t)) € co 0, xH(t, X(1), P(t), (1)), a.e t € [0, T],
(iii) P(T) € Ap0D(X“(T)),
(iv) H(t, X (1), P(1), 7(t)) = max,epn He(t, X (1), P(t),u), a.e. t € [0,T],
(V) H(t, X(@), P(2),y(t)) = r(t), ae. t € [0,T],

where 0, xH. and 0O denote the limiting subdifferential of H, and ® with respect to (¢, X) and X
respectively, while co stands for the closed convex hull. Using the definition of H, we have that

(p, b, Ap) % (0,0,0), (3.31)
(1), p(2)) € =b(1) co 0, Le(t, y(1), ¥(1)), (3.32)
b(t) =0, (3.33)

p(T) € Ao 0(g + % do)(y(T)), (3.34)
b(T) = A, (3.35)

r(t) = He(t,y(2), p(1)), (3.36)

where 0, L, and d(g + % dg) stands for the limiting subdifferential of £(:,-, u) and g(-) + %dg(-). We
claim that 4y > 0. Indeed, suppose that 4y = 0. Then b = 0 by (3.33) and (3.35). Moreover, p(T) = 0
by (3.34). It follows from (3.32) that p = 0, which is in contradiction with (3.31). So, 49 > 0 and we
may rescale p and b so that b(t) = Ao = 1 for any ¢ € [0, T].

Note that the Weierstrass Condition (iv) becomes

= (PO ¥O) = f(6 Y@, 70) = sup { = (p(0),0) = f(1, ¥, )}, (3.37)
Therefore
¥() = =D,H(t,y(1), p(1)), ae.r€[0,T]. (3.38)

By Lemma 2.1, by the definition of p, and by (3.5) we have that

[—k(1 + [u?), k(1 + |u|*)] X D f(t, x, u) if xeQ,
O Le(t, x,u) C 3 [—k(1 + |ul?), k(1 + [ul*)] X (D, f (¢, x,u) + 1 Dbq(x)) if 0 < bo(x) < p,
[—k(L + [u), k(1 + [ul)] X (D, f(t, x,u) + 1[0, 1] Dbo(x)) if x € 6Q.

Thus (3.32) implies that there exists A(f) € [0, 1] as in (3.27) such that

D) < k(1 + (0P, Yre[0,T], (3.39)
A
p(0) = =D f(t,y(®), (1) — g Dbo(y(n), ae.r€[0,T]. (3.40)

Hence, by (3.39), and by Remark 3.3 we conclude that
T T
f |7(¢)| dt < Kf (1 + [y dt < k(T + 4uk). (3.41)
0 0
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Moreover, by Lemma 2.1, and by assumption on g, one has that

1 Dg(x) if x € Q,
a(s + 5 dq)(x) C 4 Dg(x) + } Dba(x) if 0 < bo(x) < p,
Dg(x) + %[O, 1] Dbq(x) if x € 9Q.

So, by (3.34), there exists § € [0, 1] as in (3.28) such that

P(T) = D)+ Dha().
Finally, by well-known properties of the Legendre transform one has that
D.H(t,x, p) = =D, f(t,x,—D,H(t, x, p)).

So, recalling (3.38), (3.40) can be rewritten as
A1)

p(t) = D:H(t,y(1), p(1)) - = Dbq(y(n), a.e. 1€ [0,T].

We have to prove estimate (3.29). Recalling (3.23) and (3.19), we have that

1 1 1
He(t,y(1), p(0)) = H(t,y(1), p(1) = — da(y() 2 @Ip(t)l2 —Cu, M) - — da(y(1).

So, using (3.41) one has that

T
|H(T, y(T), p(T)) = He(t, y(1), p)| = |n(T) = r(0)] < f [F(s)lds < k(T + 4uK).

Moreover, (3.42) implies that |p(T')| < % + [|Dglle- Therefore, using again (3.19), we obtain

1 1
@IP(I)I2 —Cu, M") - p do(y(1) < He(t,y(1), p(1)) < H(T, y(T), p(T)) + (T + 4uK)

1
< 4ulp(D)F + Cu, M') + k(T + 4uK) < 8y 27 IDgll2,

Hence,

PO < 4u

1 C
—da(y(1) + 5—;] ,

where C; = 8u + 8u||Dg||%, + 2C(u, M") + k(T + 4uK). This completes the proof of (3.29).

+ C(u, M) + k(T + 4uK).

(3.42)

Finally, by the regularity of H, we have that p € Lip(0,7;R"). So,y € C LL(10, T]; R™). Observing
that the right-hand side of the equality y(1) = —D,H(t,y(1), p(t)) is continuous we conclude that this

equality holds for all # in [0, T'].

O

Lemma 3.5. Let p € (0,p0] and let € € (0, (p)], where €(p) is given by Lemma 3.3. Fix 6 € (0, 1],
let x € Q, and let y € Xcs[x). If y(t) & OQ for some t € [0,T], then there exists T > 0 such that

yeC?((f-ni+7)n[0,TLR")
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Proof. Lety € Xs[x] and let 7 € [0, T] be such that y(7) € QU (R" \ Q). If y(7) € R" \ Q, then there
exists 7 > 0 such that y(r) e R" \ Qforallz € I := (t— 7,1+ 1) N [0,T]. By Lemma 3.4, we have that
there exists p € Lip(0, 7; R") such that

¥(1) = =D, H(t,y(1), p(1),

1
p(t) = DH(t,y(), p(t)) - ngg()’(t)),

for t € I. Since p(¢) is Lipschitz continuous for t € I, and y(t) = —D,H(t,y(1), p(1)), then y belongs to
C! (I;R"). Moreover, by the regularity of H, bq, p, and ¥ one has that p(f) is continuous for ¢ € 1. Then
p € C'(I;R"). Hence, y € C' (I; R"). So, y € C?>(I;R"). Finally, if y(¢) € Q, the conclusion follows by
a similar argument. O

In the next two lemmas, we show that, for e > 0 and ¢ € (0, 1] small enough, any solution y of problem
(3.22) belongs to Qforallt € [0, T]. For this we first establish that, if 6 € (0, 1] is small enough and
v(T) ¢ Q, then the function ¢ +—> bo(y(¢)) has nonpositive slope at + = 7. Then we prove that the
entire trajectory y remains in Q provided € is small enough. Hereafter, we set

€ = €(pg), where py is such that (2.1) holds and e(-) is given by Lemma 3.3.

Lemma 3.6. Let .
0=——NANI1, 3.43
2N (3.43)

where
N =sup |D,H(T, x, Dg(x))|.

xeR"

Fix any 6, € (0,06] and let x € Q. Letee 0, &l If y € X5, [x] is such that y(T) ¢ Q, then

(V(T), Dbo(y(T))) < 0.

Proof. Asy(T) ¢ Q, by Lemma 3.4 we have that p(T") = Dg(y(T)) + é Dbq(y(T)). Hence,

(DpH(T, ¥(T), p(T)), Dba(/(T))) = (D,H(T, (), Dg(x(T))), Dba(y(T)))

1
+(D,H(T, (T), Dg(y(T)) + 5 Dba(y(1) = D,H(T, y(T), Dg(¥(T))), Dbo(y(T))).

: 2 I
Recalling that D » pH (t,x,p) > 5> one has that

1 1
(D,H(T,y(T), Dg(y(T)) + 5 Dba((T)) = D,H(T, ¥(T), Dg((T)), Dbq(y(T)))

11

>——|D P = —.
> 2le ba(y(T))| 2

So,
1
(Do H(T AT, 1), Dha(TD) 2 5 = IDpH(T, y(T), DT
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Therefore, we obtain

(H(T), Dba((T))) = ~(D,H(T,¥(T), p(T)), Dba(x(T)))

1
< ~“2on +|D,H(T, y(T), Dg(y(T))I.

Thus, choosing ¢ as in (3.43) gives the result. O

Lemma 3.7. Fix 6 as in (3.43). Then there exists €, € (0, €], such that for any € € (0, €]
VxeQ, yeXslx] = y()eQ Vrel0,T].
Proof. We argue by contradiction. Assume that there exist sequences {e}, {#}, {xx}, {yx} such that
&l 0, 4, €]0,T], x € Q, Vi € Xe slxi] and yi(ty) ¢ Q, forallk>1. (3.44)

Then, for each k > 1 one could find an interval with end-points O < a; < b, < T such that

do(yi(ap) = 0,
do(yi(0) >0 1€ (a, by),
do(yi(by)) =0 orelse b, =T.

Let t; € (ay, bx] be such that
do(yi(tp)) = max_do(yi(?)).
telag,bi]

We note that, by Lemma 3.5, y; is of class C? in a neighborhood of #.

Step 1

We claim that )
dr?

Indeed, (3.45) is trivial if #;, € (ay, by). Suppose 1y = b;. Since f; is a maximum point of the map

t +—> do(yi(®) and y(7) ¢ Q, we have that do(y(7)) # 0. So, b, = T = 7, and we get

do(yi(0)| . <0. (3.45)

d
—d, t > 0.
T A0 2

Moreover, Lemma 3.6 yields

d
Zdatn(0)|_ <0.

So,
d do(y(@)| . =0
dt Q 7k t:;k - )
and we have that (3.45) holds true at #;, = 7.
Step 2
Now, we prove that
1 Cc, 4 _
— <Cu,M',x)|1+ 4,u—1 + i do(yi(t)|, VYk=>1, (3.46)
UE; 2 &
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where C; = 8u + 8u||Dgl%, + 2C(u, M) + k(T + 4uK) and the constant C(u, M’, k) depends only on ,
M’ and «. Indeed, since vy is of class C? in a neighborhood of 7; one has that
(@) = = DL H (@ y (@), p@) — (D2 H( y(@). pi). 7)) (3.47)
— (D2, H(t y(). p@). pin))

Developing the second order derivative of dg, o v, by (3.47) and the expression of the derivatives of y
and p in Lemma 3.4 one has that

(D2 da(y(@)¥(0). ¥(@)) + ( Dda(y(@). (1))
(D*daly(@)D, H (i, y(10), p(t)), DpH(r, y(10), p(io)))
—(Dda(y(1)). D}, H(tr, y(5), p(i0)) )

+(Dda(y(t0)), D} H (b, (@), p(E))Dp HEr, y(@), p(ic)))
—(Dda(y(@)). D}, H(t y(t). p()DH G v, pic))

1 - _ _ _ _
+= (Dda(y(10). Dy, H(te, y(0). pi) Dda(y (1))

0

\%

We now use the growth properties of H in (3.14), and (3.16)-(3.18), the lower bound for Df,pH in
(3.13), and the regularity of the boundary of €2 to obtain:

1 - - -
e < Cu, M1+ |p))* + kC(p, M)A + |pEol) < Clu, M7, k)(1 + | p@)l),

where the constant C(u, M’, k) depends only on u, M’ and «. By our estimate for p in (3.29) we get:

1 c, 4 -
— < C, M, 0|1+ 4= + EaoGo|, Vi1,
L€ o €k
where C; = 8u + 8ul||Dgll%, + 2C(u, M") + k(T + 4uK).
Conclusion
Let p = min {po, m} Owing to Lemma 3.3, for all € € (0, e(p)] we have that

sup do(y(1) <p, Yy € Xeslx].
t€[0,T]

Hence, using (3.46), we deduce that

1 C
—— <4C(u, M, [1+4 —]
2, (1, M', k) 1

Since the ahove inequality fails for k large enough, we conclude that (3.44) cannot hold true. So, ()
belongs to Q for all ¢ € [0, T']. O

An obvious consequence of Lemma 3.7 is the following:

Corollary 3.1. Fix 6 as in (3.43) and take € = €, where €, is defined as in Lemma 3.7. Then an arc
v(+) is a solution of problem (3.22) if and only if it is also a solution of (3.1).
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We are now ready to complete the proof of Theorem 3.1.

Proof of Theorem 3.1. Let x € Q and y* € X[x]. By Corollary 3.1 we have that y* is a solution of
problem (3.22) with ¢ as in (3.43) and € = € as in Lemma 3.7. Let p(-) be the associated adjoint map
such that (y*(-), p(-)) satisfies (3.26). Moreover, let A(-) and B8 be defined as in Lemma 3.4. Define
y = §. Then we have 0 < v < }5 and, by (3.26),

p(T) = Dg(y*(T)) + v Dba(y*(T)). (3.48)
By Lemma 3.4 y* € C"'([0, T]; Q) and
¥*(t) = =D, H(t,y*(t), p(t)), Yte[0,T]. (3.49)
Moreover, p(-) € Lip(0, T; R") and by (3.29) one has that

()] < 2 ”“;Cl, Vi e 0,7,

where C; = 8u + 8ul|Dgl|%, + 2C(u, M’) + k(T + 4uK). Hence, p is bounded. By (3.49), and by (3.17)
one has that

VuC
741l = sup ID,H(E,y* (0. pO)] < Clut M) sup [p(o) + 1) < Cu, M2~ + 1))=L,

1€[0,T] 1€[0,T]

where L* = L*(u, M", M, k, T, ||Dg||w, ||gllo). Thus, (3.21) holds
Finally, we want to find an explicit expression for A(¢). For this, we set

D ={te[0,T]:y*(t) € 0Q} and D,, = {t € [0, T]: |ba(y* )| < po}.
where py is as in assumption (2.1). Note that /(f) := bg o y* is of class C"! on the open set D,,, with

d() = (Dba(y*(0),7*(1)) = (Dba(y* (1), =D, H(t,y* (1), p(1))).

Since p € Lip(0, T; R"), ¢ is absolutely continuous on D,,, with

U = ~(D*baly* ()7 (), DH(L, y* (1), p(1)) = (Dbaly* (1)), D} H(t, y* (1), p(1)))
(Dba(y* (1)), D} H(t,y* (1), pO)7* (0)) = ( Dba(y* (1)), D} H(t, y* (1), p(£) p(0))
(D*ba(y* ()D,H(t,y* (), p(). D H (L, v* (1), p(1)))

(Dba(y* (1)), D} H(t, y* (1), p(1)))
{
{

—+

Dba(y* (1), DL H(t, y* (1), p(0))D,H(t,y* (1), p(1)))

Dba(y* (1)), D3, H(t,y* (1), p(0) D H(t, y* (1), p(1)))

A
g (Dbay* (1), Dy, H(t.y* (1), p(0) Dbaly* ().

Let Ny« ={t€ DN (0, T)| U(t) # 0}. Lett € N,«, then there exists o > 0 such that y*(s) ¢ 0Q for any
s€((t—o,t+0)\({t}) N(0,T). Therefore, N,~ is composed of isolated points and so it is a discrete
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set. Hence, y(f) = 0 a.e. t € DN (0,T). So, Y(t) = 0 a.e. in D, because i is absolutely continuous.
Moreover, since D> H(t, x, p) > 0 and |Dbqo(y*(1))| = 1, we have that

(Dba(y* (1)), D3, H(t,v* (1), p(0)Dba(y* (1)) > 0, ae.t €D,
So, for a.e. t € D, A(¢) is given by

A 1
€ (Dba(y*(1)), D2,H(t, y* (1), p(t) Dba(y* (1))
—(D*ba(y* (0)D,H(t,y* (1), p(0). D,H(t.7* (1), p(1)))
— (Dba(y* (1), D H(t, y* (1), p(H)D,H(t, y* (1), p(1)))
+(Dba(y* (1), DL, H(t, y* (1), ) DH (1, y* (0, p(1)))].

[{Dbaty* ). Dy, Ht.y* (). p(®))

Since A(t) = Oforall 7 € [0, T]\D by (3.27), taking A(t, y*(¢), p(¢)) = @, we obtain the conclusion. O

Remark 3.4. The above proof gives a representation of A, i.e., for all (¢, x, p) € [0,T] x Z,) X R" one
has that

A, x, p) = [ - <D2bg(x)DpH(t, x,p), D,H(t, x, p)> - <Dbg(x), D?”H(t, X, p)>—

o(t, x, p)
<Dbg(x), Df,xH(t, x,p)D,H(t, x, p)> + <Dbg(x), D;pH(t, x, p)D,H(t, x, p)>],

where 0(¢, x, p) := (Dbg(x), DipH (t, x, p)Dbg(x)). Observe that (3.13) ensures that 8(¢, x, p) > 0 for all
t€[0,T], forall x € X, and for all p € R".

3.3. Proof of Theorem 3.1 for general U

We now want to remove the extra assumption U = R". For this purpose, it suffices to show that the
data f and g—a priori defined just on U—can be extended to R" preserving the conditions in (f0)-(f2)
and (gl). So, we proceed to construct such an extension by taking a cut-off function ¢ € C*(R) such
that

&x)=0 if x € (—00,1],
0<éx) <1 if xed,3), (3.50)
&E=1 if x €[2,+00).

Lemma 3.8. Let Q ¢ R" be a bounded open set with C 2 boundary. Let U be a open subset of R" such
that Q c U and set B
oo =dist(Q,R"\ U) > 0.

Suppose that f : [0,T] X U XR" - Rand g : U — R satisfy (f0)-(f2) and (gl), respectively. Set
o = 0o A po. Then, the function f admits the extension

2
Ft,x,v) = g(bga(x)) % + (1 - g(bg(x))) ftx,v), Yt xv) e[0,T] xR X R",

(o
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that satisfies conditions (f0)-(f2) with U = R". Moreover, g admits the extension
ba(x)
o

=122 e

that satisfies condition (g1) with U = R".
Note that, since € is bounded and U is open, the distance between Q and R" \ U is positive.

Proof. By construction we note that fe C([0,T] x R" x R™). Moreover, for all ¢ € [0, T'] the function
(x,v) — ]7(t, x,v) is differentiable and the map (x,v) — va(t, x,v) is continuously differentiable by
construction. Furthermore, Dxf, vaare continuous on [0, 7] X R" x R" and fsatisﬁes (3.2). In order
to prove (3.3) for ]7: we observe that

Dy f(t,x,v) = & (bﬂ(x)) v+ (1 - (bgix))) D, f(t, x, V),

o

and

D\Z/vﬂt’ X, V) = é: (bQ(X)) I+ (1 - é: (bQ(X) )) D\Z,Vf(l, X, V).
o o

Hence, by the definition of ¢ and (3.3) we obtain that

1 —
(1A= <DL ft.xv) <A VI, Y (txv)€[0,TIXR XR".
M

Since u > 1, we have that fveriﬁes the estimate in (3.3).

Moreover, since
é(bQ(X)) v Dbg(x) + (1 y: (M)) Dfxf(t, X, V)
o o o

¢ (bQ(x)

(o

DD, f(t, x,v))

)D‘, Ftxm) @ 20e).
(oa

and by (3.4) we obtain that
D2 £z, x, )| < C(u, M)(1 + V) V(t,x,v) € [0, T] X R" x R".
For all (x,v) € R" x R" the function t +— f(t, x,v) and the map ¢t +— va(t, x,v) are Lipschitz

continuous by construction. Moreover, by (3.5) and the definition of £ one has that

(1 - ‘g:(bg(x})) [f(t9 X, V) - f(S, X, V)]

(o

< k(1 + Pt - s

‘f(r, X, V) — f(s, X, v)‘ =

foralls, s € [0,T], x € R", v € R". Now, we have to prove that (3.6) holds for ]7 Indeed, using (3.6)
we deduce that

va(t, X, V) — va(s, X, v))| <

(1- (22 i0.s0.50 - Dosts 5
< k(1 + vt = s,

forall#, s € [0,T], x € R", v € R". Therefore, fveriﬁes the assumptions (f0)-(f2).
Finally, by the regularity of bo, &, and g we have that g is of class C ;(R”). This completes the proof. 0O
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4. Applications of Theorem 3.1

4.1. Lipschitz regularity for constrained minimization problems

Suppose that f : [0,T] X U XR" - Rand g : U — R satisfy the assumptions (f0)-(f2) and (g1),
respectively. Let (¢, x) € [0, T]x Q. Define u : [0, T]x € — R as the value function of the minimization
problem (3.1), i.e.,

T
u(t, x) = inf f f(s,v(s),¥(s)) ds + g(y(T)). “4.1)
vel

y(@) =x

Proposition 4.1. Let Q be a bounded open subset of R" with C? boundary. Suppose that f and g satisfy
(f0)-(2) and (g1), respectively. Then, u is Lipschitz continuous in [0, T] X .

Proof. First, we shall prove that u(z, ) is Lipschitz continuous on €2, uniformly for ¢ € [0,7]. Since
u(T,-) = g, it suffices to consider the case of r € [0, 7). Let xo € Q and choose 0 < r < 1 such that
B,(x0) C By, (x9) C By, (x9) C Q. To prove that u(z, -) is Lipschitz continuous in B,(xy), take x # y in
B,(xo). Let y be an optimal trajectory for u at (z, x) and let y be the trajectory defined by

Y@ =y,
¥(s) = 7(s) + = ifse[tr+7] ae,
¥(s) = ¥(s) otherwise,

where T = ';Zf' < T —t. We claim that

(@) yt+1) =y(t+1);

(b) ¥(s) = y(s) forany s € [t + 7, T1;

(©) [y(s) =y(s)l < ly— x| forany s € [z, + 7];
(d) ¥(s) € Q for any s € [t, T].

Indeed, by the definition of y we have that

?a+ﬂ—7m:?u+ﬂ—y=j1(ﬂ@+fflﬁ“=7“+”‘%

and this gives (a). Moreover, by (a), and by the definition of y one has that y(s) = y(s) for any
s € [t + 7, T]. Hence, y verifies (b). By the definition of y, for any s € [¢,¢ + 7] we obtain that

Y& =y < y-x+ S@wa—ﬂa»mr:y—x+ S—i—mrsw—ﬂ
t t xTy

and so (c¢) holds. Since y is an optiLnal trajectory for u and by y(s) = y(s) for all s € [t + 7, T], we only
have to prove that y(s) belongs to Q for all s € [¢,¢ + 7]. Let s € [¢, ¢ + 7], by Theorem 3.1 one has that

fx?(cr)do"+r£ f
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(s—D+r<L*t+|x—yl+r

sf 9+ 2o 4 7 < 1G5 -y + 222
t T T

lx=y

57+ one has that

Recalling that 7 =

lx =yl

ly(s) — xo| < +|x =yl +r<4r

Therefore, ¥(s) € Bu,(xo) C Q forall s € [£,7 + 7).
Now, owing to the dynamic programming principle, by (a) one has that

u(t,y) < f (s, 7(5), ¥(5)) ds + u(t + 7, y(t + 7). 4.2)
Since vy is an optimal trajectory for u at (¢, x), we obtain that
u(t, y) < u(t, x) + f | £, 7(), 7)) = (s, 7(5), 7(5) | ds.

By (3.7), (3.8), and the definition of y, for s € [¢,¢ + 7] we have that

£ (s, 7(8), ¥(5)) — £(s5,7(5), ()|
<18, 7(5), 7(8)) = F(5,7(8), T + 1 (5, 7(5), 7(5)) = £(5,¥(5), F(5))]

< fo 1 KD,.f (s, 7(5), A7(s) + (1 = D¥(s)), ¥(s) — ¥(s))| dA
+ fo | D, f (5, 7 (s) + (1 = Dy(s5), ¥(5)), ¥(s) = ¥(s))] dA
< C(u, M)Iy(s) = ¥(s)| fo 1(1 +17(s) + (1 = Dy(s)) da
- Clu M) = y(5) [ (14 P
By Theorem 3.1 one has that
fo 1(1 +|5(s) + (1 = Dy(s)))dA < 1 +4L*, (4.3)

1
f (1 + ()P da< 1+ (L% (4.4)
0

Using (4.3), (4.4), and (c), by the definition of y one has that

|x =yl
=

(8, 7(5),7(5)) = f(5,7(8), ()| < Cu, MY(1 +4L*) + Clu, M)A+ (L*P)x =y, (4.5)

for a.e. s € [t,t + 7]. By (4.5), and the choice of 7 we deduce that
+T |x _ y| ) +T
u(t,y) < u(t,x) + C(u, M)(1 +4L*)f ——ds+ C(u, M)(1 + (L*) )f |x —ylds
' T t

Mathematics in Engineering Volume 1, Issue 1, 174-203



195

< ut, x) + Cu, MY(L + 4L%)|x = y| + 7CQu, MY(1 + (L*))|x = y| < u(t, x) + Cpalx =y

where C;« = C(u, M)(1+4L*)+ 2£* C(u, M)(1+(L*)?). Thus, u is locally Lipschitz continuous in space
and one has that ||Du||, < ¢}, where ¥ is a constant not depending on Q. Owing to the smoothness of
Q, u is globally Lipschitz continuous in space, uniformly for 7 € [0, T].

In order to prove Lipschitz continuity in time, let x € Q and fix t1,t, €[0,T] witht, > ;. Lety be

an optimal trajectory for u at (¢, x). Then,

lu(t2, x) — u(ty, X)| < |u(tz, x) = u(ty, y())| + lu(tz, y(12)) — u(ty, x)|. (4.6)

The first term on the right-side of (4.6) can be estimated using the Lipschitz continuity in space of u
and Theorem 3.1. Thus, we get

|u(t2, %) = u(t2, y(12))] < Cpxlx = y(1)| < Cpx f ()l ds < L*Cps(t2 — 1h). 4.7)

We only have to estimate the second term on the right-side of (4.6). By the dynamic programming
principle, (3.9), and the assumptions on F' we deduce that

|u(r2, y(12)) — u(ty, X)| =

f(S,Y(S),Y(S))dS‘Sf [f (s, v(s), ()l ds (4.8)

1

15)
< f [C(,u, M) + 4,U|7"(S)|2] ds < [C(u, M) + 4uL*](tz —-n)
41

Using (4.7) and (4.8) to bound the right-hand side of (4.6), we obtain that « is Lipschitz continuous in
time. This completes the proof. O

4.2. Lipschitz regularity for constrained MFG equilibria

In this section we want to apply Theorem 3.1 to a mean field game (MFG) problem with state
constraints. Such a problem was studied in [11], where the existence and uniqueness of constrained
equilibria was obtained under fairly general assumptions on the data. Here, we will apply our necessary
conditions to deduce the existence of more regular equilibria than those constructed in [11], assuming
the data F and G to be Lipschitz continuous.

Assumptions

Let Q be a bounded open subset of R” with C? boundary. Let £(Q) be the set of all Borel probability
measures on Q endowed with the Kantorovich-Rubinstein distance d; defined in (2.2). Let U be an
open subset of R” and such that QcU. Assume that F : UXP(Q) » Rand G : U x P(Q) —» R
satisfy the following hypotheses.

(D1) For all x € U, the functions m +— F(x,m) and m — G(x, m) are Lipschitz continuous, i.e., there
exists a constant x > 0 such that

|[F(x,my) = F(x,mp)| + |G(x,m;) — G(x,my)| < kdi(my, my), (4.9)
for any my, m; € P(ﬁ).
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(D2) Forall m € P(ﬁ), the functions x — G(x, m) and x — F(x, m) belong to C},(U ). Moreover
ID.F(x,m)| +|D.G(x,m)| <k, Y xeU ¥YmePQ).
Let L : U XxR" — R be a function that satisfies the following assumptions.
(LO) L € CY(U x R") and there exists a constant M > 0 such that
|L(x,0)| + |D,L(x,0)| + D, L(x,0)| < M, VY xeU. (4.10)
(L1) D,L is differentiable on U X R" and there exists a constant u > 1 such that
;It < D% L(x,v) < I, (4.11)
ID2, Lx, v)I| < (1 + VD), (4.12)

for all (x,v) € U X R".
Remark 4.1. (1) F, G and L are assumed to be defined on U X P(ﬁ) and on U X R", respectively, just

for simplicity. All the results of this section hold true if we replace U by Q. This fact can be easily
checked by using well-known extension techniques (see, e.g. [1, Theorem 4.26]).
(i1) Arguing as Lemma 3.1 we deduce that there exists a positive constant C(u, M) that dependes only

on M, u such that

|D.L(x,v)| < C(u, M)(1 + [v]), (4.13)

|D,L(x,v)| < C(u, M)(1 + |v]), (4.14)
2

% — C(u, M) < L(x,v) < 4upv)* + C(u, M), 4.15)

for all (x,v) € U X R".

Let m € Lip(0, T; P(ﬁ)). If we set f(t,x,v) = L(x,v) + F(x,m(?)), then the associated Hamiltonian H
takes the form

H(ta X, p) = HL(xa p) - F(-x, m(t))a v (ta X, p) € [0’ T] X U X Rn’
where

H;(x,p) = sup{ —{(p,v) — L(x, v)}, Y (x,p) e UXR".

veR"

The assumptions on L imply that H; satisfies the following conditions.

1. H; € C'(U x R") and there exists a constant M’ > 0 such that
|[Hp(x,0)| + [D H(x,0)| + |D,H(x,0)| < M', VxeU. (4.16)
2. D,H, is differentiable on U X R" and satisfies
/11 < D, Hi(x.p) < I, ¥ (x.p) € UXR, (4.17)
1D} Hy(x, p)ll < C(u, M')(1 +p)), ¥ (x,p) € UXR", (4.18)

where y is the constant in (1) and C(u, M") depends only on p and M’.
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For any 7 € [0, T], we denote by ¢, : I’ — Q the evaluation map defined by

ey)=v(@), Vyel.

For any n € P(I'), we define
m'(t) = efin VYt e [0,T].
Remark 4.2. We observe that for any n € P(I), the following holds true (see [11] for a proof).
(i) m" € C([0, T]; P(Q)).

(i1) Let n;, n € P(I'), i > 1, be such that 7; is narrowly convergent to . Then m”(¢) is narrowly

convergent to m'(¢) for all ¢t € [0, T'].

For any fixed m, € P(Q), we denote by P, (I) the set of all Borel probability measures 1 on I' such
that eofin = my. For all n € P,,,([), we set

T
Iyl = fo | LGy (0), 7(6) + Foy(t), m"(#))| dt + Go(T), m"(T)), Wy €T.

For all x € Q and n € Py, (I'), we define

[x] = {y € Tlx] : J,[y] = min T,).

It is shown in [11] that, for every € P, ('), the set I'"'[x] is nonempty and I'’[-] has closed graph.
We recall the definition of constrained MFG equilibria for my, given in [11].

Definition 4.1. Let my € P(Q). We say that n € Po(D) is a contrained MFG equilibrium for my if

supp(p) € |_JT71x1.
xeQ
Let I'” be a nonempty subset of I'. We denote by #,, (I") the set of all Borel probability measures 17 on

[ such that egfin = my. We now introduce special subfamilies of #,, (I) that play a key role in what
follows.

Definition 4.2. Let I be a nonempty subset of I'. We define by P;iop(l“’) the set of n € P,,,(I'") such that
m'(t) = e;n is Lipschitz continuous, i.e.,

Pr>(I) = (n € P, (") : m" € Lip(0, T; P(Q))).

Remark 4.3. We note that P,],“fop(l") is a nonempty convex set. Indeed, let j : Q — T be the continuous
map defined by
Jjx)(@® =x Vtel0,T].
Then,
n = jimo
is a Borel probability measure on I" and 17 € P;iop(l“). _
In order to show that ?,L,llop(l“) is convex, let {;}i=12 C P,];,lop(l") and let A;, A, > O be such that 1; + 1, = 1.
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Since 7; are Borel probability measures, 17 := An; + (1 — )i, is a Borel probability measure as well.
Moreover, for any Borel set B € Z(Q2) we have that

2 2 2
eofn(B) = ey (B) = >~ Amileg'(B) = ) Aieofini(B) = > Amo(B) = mo(B).
i=1 i=1 i=1

So, n € Py, (D). Since m™, m"™ e Lip(0, T} P(ﬁ)), we have that m"(¢t) = A;m" (t) + 1,m"™(¢) belongs to
Lip(0, T'; P()).

In the next result, we apply Theorem 3.1 to prove a useful property of minimizers of J,.

Proposition 4.2. Let Q be a bounded open subset of R" with C 2 boundary and let my € P(Q). Suppose
that (LO), (L1), (D1), and (D2) hold true. Let n € Py>(T) and fix x € Q. Then I"[x] c C*'([0, T];R")
and

IVl < Lo, Yy €I"[x], (4.19)

where Ly = Lo(u, M", M, k, T, ||G|co, [|DG]| o)

Proof. Letp € Pr2(I), x € Q and y € I"[x]. Since m € Lip(0, T; P(Q)), taking f(t, x,v) = L(x,v) +
F(x,m(t)), one can easly check that all the assumptions of Theorem 3.1 are satisfied by f and G.
Therefore, we have that I"’[x] ¢ CY!([0, T]; R") and, in this case, (3.21) becomes

IVl < Lo, Yy €I"[x],
where Ly = Lo(u, M', M, k, T, ||Gl|co, | DG|co)- 0
We denote by I';, the set of vy € I such that (4.19) holds, i.e.,
Iy ={y eIt ¥l < Lo} (4.20)

Lemma 4.1. Let m, € P(ﬁ). Then, SD,L,,iOp(FLO) is a nonempty convex compact subset of P, (D).
Moreover, for every n € P,,,(Cr,), m'(t) := eln is Lipschitz continuous of constant Ly, where Ly is as
in Proposition 4.2.

Proof. Arguing as in Remark 4.3, we obtain that P;ZP(FLO) is a nonempty convex set. Moreover, since
I';, 1s compactly embedded in I', one has that P,];BP(FLO) 1s compact.
Letn € P,,,([,) and m"(t) = e . For any 1,1, € [0, T], we recall that

dy(m'(t,), m"(1,)) = sup { f B(x)(m(t2, dx) — m'(t,, dx)) ' ¢:Q— R is 1-Lipschitz}.
Q

Since ¢ is 1-Lipschitz continuous, one has that

e 0.0 = min.any = [ Joe, )= oten o] dnty

= fr [¢(7(tz))—¢(7(t1))] dn(y) < fr ly(22) = y(tD)l dn(y).

Since n € P,,,(I'z,,), we deduce that

j; ly(t2) — y(t)ldn(y) < Lo j; lt, — 111 dn(y) = Lolt, — 11

and so m'(¢) is Lipschitz continuous of constant L. O
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In the next result, we deduce the existence of more regular equilibria than those constructed in [11].

Theorem 4.1. Let Q be a bounded open subset of R" with C* boundary and my € P(Q). Suppose

that (LO), (L1), (D1), and (D2) hold true. Then, there exists at least one constrained MFG equilibrium
Lip

n € Py (D).

Proof. First of all, we recall that for any n € P;?(F), there exists a unique Borel measurable family *
of probabilities {17,}, 5 on I which disintegrates 7 in the sense that

{n(dy) = fm@ymo(dn, wan)
supp(n,) C I'[x] my—ae. xe€Q
(see, e.g., [2, Theorem 5.3.1]). Proceeding as in [11], we introduce the set-valued map
E : Pp(T) 3 Py (D),
by defining, for any 1 € P,,,,(I'),
E@) = {77 € Py, (D) : supp(,) € T[x] my - ae. x € Q). (4.22)

We recall that, by [11, Lemma 3.6], the map E has closed graph.
Now, we consider the restriction £, of E to SDEOP D), 1e.,

Eo: Pul(Ty,) 3 P, Eo(n) = E() ¥ € Pul(L,).

We will show that the set-valued map E, has a fixed point, i.e., there exists n € PI,;,LP(FLO) such that
n € Eo(n). By [11, Lemma 3.5] we have that for any n € PI,;liop(FLo), Ey(n) is a nonempty convex set.
Moreover, we have that ' .

Eo®Pnd(Try)) € P (Ty). (4.23)

Indeed, letp € P;iop (I'r,) and 77 € Ey(n). Since, by Proposition 4.2 one has that
I"[x]cT, VxeQ,

and by definition of E, we deduce that
supp() c T'y,.
S0,77 € Ppy(T1,). By Lemma 4.1,7 € PyP(T,,).
Since E has closed graph, by Lemma 4.1 and (4.23) we have that E, has closed graph as well. Then,
the assumptions of Kakutani’s Theorem [30] are satisfied and so, there exists 17 € P,Lnlop(FLo) such that

1 € Eo(1). O
We recall the definition of a mild solution of the constrained MFG problem, given in [11].

Definition 4.3. We say that (u,m) € C([0, T] xﬁ) xC([0,TT; P(ﬁ)) is a mild solution of the constrained
MFG problem in Q if there exists a constrained MFG equilibrium n € P, (I') such that

(i) m(r) = efin forall t € [0,T];

“We say that {n,} .5 is a Borel family (of probability measures) if x € Q +— 1,(B) € R is Borel for any Borel set B C T
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(ii) u is given by

T
u(t, x) = ;ng { f [L(y(5),7(5)) + F(y(5), m(s))] ds + G(V(T),m(T))}, (4.24)

(@) =x

for (1, x) € [0, T] x Q.

Theorem 4.2. Let Q be a bounded open subset of R" with C* boundary. Suppose that (L0),(L1), (DI)
a_nd (D2) hold true. There exists at least one mild solution (u, m) of the constrained MFG problem in
Q. Moreover,

(i) u is Lipschitz continuous in [0, T] X Q;
(ii) m € Lip(0, T’; P(ﬁ)) and Lip(m) = Ly, where Ly is the constant in (4.19).

The question of the Lipschitz continuity up to the boundary of the value function under state
constraints was addressed in [28] and [34], for stationary problems, and in a very large literature that
has been published since. We refer to the survey paper [20] for references.

Proof. Letmg € P(ﬁ) and letn € beop (I') be a constrained MFG equilibrium for m,. Then, by Theorem
4.1 there exists at least one mild solution (u, m) of the constrained MFG problem in Q. Moreover, by
Theorem 4.1 one has that m € Lip(0, T;P(ﬁ)) and Lip(m) = Ly, where L is the constant in (4.19).
Finally, by Proposition 4.1 we conclude that u is Lipschitz continuous in (0, T') X Q. O

Remark 4.4. Recall that F : U x P(Q) — R is strictly monotone if
f (F(x,my) — F(x,mp))d(my —my)(x) > 0, (4.25)
Q

for any my, m, € P(Q), and fﬁ(F(x, mp)—F(x,my))d(m; —my)(x) = 0if and only if F(x,m,;) = F(x,m;)
for all x € Q.

Suppose that F and G satisfy (4.25). Let iy, n; € Pb,iop (I') be constrained MFG equilibria and let J,,
and J,, be the associated functionals, respectively. Then J,, is equal to J,,. Consequently, if (u;,m,),
(uy, my) are mild solutions of the constrained MFG problem in ﬁ, then u; = u, (see [11] for a proof).

5. Appendix

In this Appendix we prove Lemma 2.1. The only case which needs to be analyzed is when x € 0Q.
We recall that p € 0”dg(x) if and only if there exists € > 0 such that

do(y) —da(x) —(p,y —x) > Cly — x?, for any y such that [y — x| < ¢, 5.1

for some constant C > 0. Let us show that 0”dg(x) = Dbqo(x)[0, 1]. By the regularity of b, one has
that

do(y) — do(x) — (Db (x),y — x) > bo(y) — ba(x) — (Dbg(x),y — x) > Cly — xI*.

This shows that Dbq(x) € 0Pdq(x). Moreover, since

do(y) = dao(x) = (ADbq(x),y — x) 2 A(da(y) — da(x) = (Dba(x),y — x)) VA €[0,1],
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we further obtain the inclusion
Dbq(x)[0, 1] C ddq(x).

Next, in order to show the reverse inclusion, let p € 97dq(x) \ {0} and let y € Q°. Then, we can rewrite
(5.1) as

bo(y) = ba(x) = (p,y —xy 2 Cly— 1, |y—xl<e (5.2)
Since y € Q°, by the regularity of by one has that
ba(y) — ba(x) < (Dbo(x),y — x) + Cly — x|’ (5.3)
for some constant C € R. By (5.2) and (5.3) one has that
- X
<Dbg(x> -p. > > Cly - xl.
ly — ]

Hence, passing to the limit for y — x, we have that
(Dbo(x) = p,v) 20, VveTqg(x),

where Tqc(x) is the contingent cone to Q¢ at x ( see e.g. [35] for a definition). Therefore, by the
regularity of 0Q,
Dbq(x) — p = Av(x),

where A > 0 and v(x) is the exterior unit normal vector to dQ in x. Since v(x) = Dbg(x), we have that
p =1 - )Dbq(x).
Now, we prove that 4 < 1. Suppose that y € Q, then, by (5.1) one has that
0 = da(y) 2 (1 = A(Dba(x),y - x) + Cly — x>,

Hence,

(1= <Dbg(x), Y= X
ly -

> < —Cly — x|.
x|

Passing to the limit for y — x, we obtain
(1 =) (Dbg(x),w) <0, Vwe Tg(x),

where T5(x) is the contingent cone to € at x. We now claim that A < 1. If A > 1, then (Dbq(x),w) > 0
for all w € T5(x) but this is impossible since Dbq(x) is the exterior unit normal vector to JQ in x.
Using the regularity of bg, simple limit-taking procedures permit us to prove that
0dg(x) = Dbg(x)[0, 1] when x € Q. This completes the proof of Lemma 2.1.
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