Research article Special Issues

Existence and uniqueness of solutions for nonlinear fractional differential equations depending on lower-order derivative with non-separated type integral boundary conditions

  • Received: 20 November 2018 Accepted: 25 January 2019 Published: 11 February 2019
  • We study a new class of boundary value problems of nonlinear fractional differential equations whose nonlinear term depends on a lower-order derivative with fractional non-separated type integral boundary conditions. Some existence and uniqueness results are obtained by using standard fixed point theorems. Examples are given to illustrate the results.

    Citation: Djamila Chergui, Taki Eddine Oussaeif, Merad Ahcene. Existence and uniqueness of solutions for nonlinear fractional differential equations depending on lower-order derivative with non-separated type integral boundary conditions[J]. AIMS Mathematics, 2019, 4(1): 112-133. doi: 10.3934/Math.2019.1.112

    Related Papers:

  • We study a new class of boundary value problems of nonlinear fractional differential equations whose nonlinear term depends on a lower-order derivative with fractional non-separated type integral boundary conditions. Some existence and uniqueness results are obtained by using standard fixed point theorems. Examples are given to illustrate the results.


    加载中


    [1] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, In: North-Holland Mathematics Studies, Amsterdam: Elsevier Science, 2006.
    [2] A. Granas, J. Dugundji, Fixed Point Theory, New York: Springer, 2003.
    [3] B. Ahmad, J. J. Nieto, Existence of solutions for nonlocal boundary value problems of higher order nonlinear fractional differential equations, Abstr. Appl. Anal., 2009 (2009), ID: 494720.
    [4] B. Ahmad, A. Alsaedi, B. Alghamdi, Analytic approximation of soltions of the forced Duffing equation with integral boundary conditions, Nonlinear Anal: Real World Appl., 9 (2008), 1727—1740.
    [5] B. Ahmad, J. J. Nieto, A. Alsaedi, Existence and uniqueness of solutions for nonlinear fractional differential equations with non-separated type integral boundary conditions, Acta Math. Sci., 31 (2011), 2122—2130.
    [6] B. Ahmad, S. K. Ntouyas, Fractional differential inclusions with fractional separated boundary conditions, Fract. Calc. Appl. Anal., 15 (2012), 362—382.
    [7] D. Baleanu, J. A. T. Machado, A. C. J. Luo, Fractional Dynamics and Control, New York: Springer, 2012.
    [8] F. Yan, M. Zuo, X. Hao, Positive solution for a fractional singular boundary value problem with p-Laplacian operator, Bound. Value Probl., 2018 (2018), 1—10.
    [9] I. Podlubny, Fractional Differenrial Equations, San Diego: Academic Press, 1999.
    [10] J. Sabatier, O. P. Agrawal, J. A. T. Machado, Advances in Fractional Calculus - Theoretical Developments and Applications in Physics and Engineering, Dordrecht: Springer, 2007.
    [11] R. P. Agarwal, M. Meehan, D. O'Regan, Fixed Point Theory and Applications, Cambridge University Press & Beijing World Publishing Corporation, 2008.
    [12] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, USA: Gordon and Breach Science Publishers, 1993.
    [13] S. Zhang, Positive solutions for boundary-value problems of nonlinear fractional differential equations, Electron. J. Differ. Eq., 2006 (2006), 1—12.
    [14] V. Lakshmikantham, S. Leela, J. Vasundhara Devi, Theory of Fractional Dynamic Systems, Cambridge Scientific Publishers, 2009.
    [15] X. Hao, H.Wang, Positive solutions of semipositone singular fractional differenrial systems with a parameter and integral boundary conditions, Open Math., 16 (2018), 581—596.
    [16] X. Hao, H. Sun, L. Liu, Existence results for fractional integral boundary value problem involving fractional derivatives on an infinite interval, Math. Meth. Appl. Sci., 41 (2018), 6984—6996.
    [17] X. Liu, Z. Liu, Separated boundary value problem for fractional differential equations depending on lower-order derivative, Adv. Differ. Equations, 2013 (2013), 1—11.
    [18] X. Y. Liu, Y. L. Liu, Fractional differential equations with fractional non-separated boundary conditions, Electron. J. Differ. Eq., 2013 (2013), 1—13.
    [19] Y. F. Sun, Z. Zeng, J. Song, Existence and uniqueness for the boundary value Problems of nonlinear fractional differential equations, Appl. Math., 8 (2017), 312—323.
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4884) PDF downloads(1341) Cited by(11)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog