Research article Topical Sections

3D modeling of acoustofluidics in a liquid-filled cavity including streaming, viscous boundary layers, surrounding solids, and a piezoelectric transducer

  • Received: 29 December 2019 Accepted: 26 February 2019 Published: 30 January 2019
  • MSC : 42B37, 65M60, 70J35, 74F10

  • We present a full 3D numerical simulation of the acoustic streaming observed in full-image micro-particle velocimetry by Hagsäter et al., Lab Chip 7, 1336 (2007) in a 2 mm by 2 mm by 0.2 mm microcavity embedded in a 49 mm by 15 mm by 2 mm chip excited by 2-MHz ultrasound. The model takes into account the piezo-electric transducer, the silicon base with the water-filled cavity, the viscous boundary layers in the water, and the Pyrex lid. The model predicts well the experimental results.

    Citation: Nils R. Skov, Jacob S. Bach, Bjørn G. Winckelmann, Henrik Bruus. 3D modeling of acoustofluidics in a liquid-filled cavity including streaming, viscous boundary layers, surrounding solids, and a piezoelectric transducer[J]. AIMS Mathematics, 2019, 4(1): 99-111. doi: 10.3934/Math.2019.1.99

    Related Papers:

  • We present a full 3D numerical simulation of the acoustic streaming observed in full-image micro-particle velocimetry by Hagsäter et al., Lab Chip 7, 1336 (2007) in a 2 mm by 2 mm by 0.2 mm microcavity embedded in a 49 mm by 15 mm by 2 mm chip excited by 2-MHz ultrasound. The model takes into account the piezo-electric transducer, the silicon base with the water-filled cavity, the viscous boundary layers in the water, and the Pyrex lid. The model predicts well the experimental results.


    加载中


    [1] A. Lenshof, C. Magnusson and T. Laurell, Acoustofluidics 8: Applications in acoustophoresis in continuous flow microsystems, Lab Chip, 12 (2012), 1210-1223. doi: 10.1039/c2lc21256k
    [2] M. Gedge and M. Hill, Acoustofluidics 17: Surface acoustic wave devices for particle manipulation, Lab Chip, 12 (2012), 2998-3007. doi: 10.1039/c2lc40565b
    [3] E. K. Sackmann, A. L. Fulton and D. J. Beebe, The present and future role of microfluidics in biomedical research, Nature, 507 (2014), 181-189. doi: 10.1038/nature13118
    [4] T. Laurell and A. Lenshof, Microscale Acoustofluidics, Cambridge: Royal Society of Chemistry, 2015.
    [5] M. Antfolk and T. Laurell, Continuous flow microfluidic separation and processing of rare cells and bioparticles found in blood - a review, Anal. Chim. Acta, 965 (2017), 9-35. doi: 10.1016/j.aca.2017.02.017
    [6] P. B. Muller and H. Bruus, Numerical study of thermoviscous effects in ultrasound-induced acoustic streaming in microchannels, Phys. Rev. E, 90 (2014), 043016.
    [7] P. B. Muller and H. Bruus, Theoretical study of time-dependent, ultrasound-induced acoustic streaming in microchannels, Phys. Rev. E, 92 (2015), 063018.
    [8] N. Nama, R. Barnkob, Z. Mao, et al. Numerical study of acoustophoretic motion of particles in a PDMS microchannel driven by surface acoustic waves, Lab Chip, 15 (2015), 2700-2709. doi: 10.1039/C5LC00231A
    [9] J. Lei, P. Glynne-Jones and M. Hill, Acoustic streaming in the transducer plane in ultrasonic particle manipulation devices, Lab Chip, 13 (2013), 2133-2143. doi: 10.1039/c3lc00010a
    [10] J. Lei, P. Glynne-Jones and M. Hill, Numerical simulation of 3D boundary-driven acoustic streaming in microfluidic devices, Lab Chip, 3 (2014), 532-541.
    [11] I. Gralinski, S. Raymond, T. Alan, et al. Continuous flow ultrasonic particle trapping in a glass capillary, J. Appl. Phys., 115 (2014), 054505.
    [12] M. W. H. Ley and H. Bruus, Three-dimensional numerical modeling of acoustic trapping in glass capillaries, Phys. Rev. Appl., 8 (2017), 024020.
    [13] P. Hahn and J. Dual, A numerically efficient damping model for acoustic resonances in microfluidic cavities, Phys. Fluids, 27 (2015), 062005.
    [14] COMSOL Multiphysics 53a, 2017. Available from: www.comsol.com.
    [15] J. S. Bach and H. Bruus, Theory of pressure acoustics with viscous boundary layers and streaming in curved elastic cavities, J. Acoust. Soc. Am., 144 (2018), 766-784. doi: 10.1121/1.5049579
    [16] S. M. Hagsäter, T. G. Jensen, H. Bruus, et al. Acoustic resonances in microfluidic chips: full-image micro-PIV experiments and numerical simulations, Lab Chip, 7 (2007), 1336-1344. doi: 10.1039/b704864e
    [17] CORNING, Glass Silicon Constraint Substrates, Houghton Park C-8, Corning, NY 14831, USA, accessed 23 October 2018. Available from: http://www.valleydesign.com/Datasheets/Corning Pyrex 7740.pdf.
    [18] M. A. Hopcroft, W. D. Nix and T. W. Kenny, What is the Young's modulus of silicon, IEEEASME Journal of Microelectromechanical Systems, 19 (2010), 229-238. doi: 10.1109/JMEMS.2009.2039697
    [19] J. Dual and D. Möller, Acoustofluidics 4: Piezoelectricity and Application to the Excitation of Acoustic Fields for Ultrasonic Particle Manipulation, Lab Chip, 12 (2012), 506-514. doi: 10.1039/c1lc20913b
    [20] Meggit A/S, Ferroperm Matdat 2017, Porthusvej 4, DK-3490 Kvistgaard, Denmark, accessed 23 October 2018. Available from: https://www.meggittferroperm.com/materials/.
    [21] J. T. Karlsen and H. Bruus, Forces acting on a small particle in an acoustical field in a thermoviscous fluid, Phys. Rev. E, 92 (2015), 043010.
    [22] M. Settnes and H. Bruus, Forces acting on a small particle in an acoustical field in a viscous fluid, Phys. Rev. E, 85 (2012), 016327.
    [23] P. B. Muller, R. Barnkob, M. J. H. Jensen, et al. A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces, Lab Chip, 12 (2012), 4617-4627. doi: 10.1039/c2lc40612h
    [24] J. S. Bach and H. Bruus, Different origins of acoustic streaming at resonance, Proceedings of Meeting on Acoustics 21ISNA, 34 (2018), 022005.
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(7111) PDF downloads(1406) Cited by(24)

Article outline

Figures and Tables

Figures(3)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog