Research article Topical Sections

Sensitivity validation of a fuzzy system for asset allocation

  • Received: 27 September 2019 Accepted: 30 January 2020 Published: 31 March 2020
  • This paper shows how a fuzzy model for asset allocation can be validated. For this purpose, special instruments are developed that allow such testing for models developed for advisory and diagnostic tasks. The procedures and instruments are presented using the example of a fuzzy logic-based model, which is hierarchically structured and which aggregates in a rule-based manner. It was developed as a pilot model of a “Robo-advisor” with the professional support of a major bank which is globally active in asset management. The validation examples presented show that the instruments can be used to comprehensively identify the extent to which the diagnoses and recommendations of a fuzzy model correspond to those of the expert whose decision-making behavior was depicted in the model. In addition, it can also be determined whether the proposals of the model change in the same way as the expert changes his proposals when the parameters of an investment project change. The validation results prove that fuzzy concepts enable the development of a decision support model that can complement the investment advice of financial institutions in a valuable way.

    Citation: Reiner North. Sensitivity validation of a fuzzy system for asset allocation[J]. AIMS Electronics and Electrical Engineering, 2020, 4(2): 169-187. doi: 10.3934/ElectrEng.2020.2.169

    Related Papers:

  • This paper shows how a fuzzy model for asset allocation can be validated. For this purpose, special instruments are developed that allow such testing for models developed for advisory and diagnostic tasks. The procedures and instruments are presented using the example of a fuzzy logic-based model, which is hierarchically structured and which aggregates in a rule-based manner. It was developed as a pilot model of a “Robo-advisor” with the professional support of a major bank which is globally active in asset management. The validation examples presented show that the instruments can be used to comprehensively identify the extent to which the diagnoses and recommendations of a fuzzy model correspond to those of the expert whose decision-making behavior was depicted in the model. In addition, it can also be determined whether the proposals of the model change in the same way as the expert changes his proposals when the parameters of an investment project change. The validation results prove that fuzzy concepts enable the development of a decision support model that can complement the investment advice of financial institutions in a valuable way.


    加载中


    [1] Rommelfanger H (2015) Ratingmethoden. In: Everling O, Leker J, Bielmeier S (Eds.), Credit Analyst (3rd ed.). München, Germany: Oldenbourg-Verlag, 79-98.
    [2] Zadeh LA (1965) Fuzzy Sets. Information and Control 8: 338-353. doi: 10.1016/S0019-9958(65)90241-X
    [3] Rommelfanger H (1993) Fuzzy Logik basierte Verarbeitung von Expertenregeln. OR-Spektrum 15: 31-42. doi: 10.1007/BF01783415
    [4] Rommelfanger H (1997) Regelbasierte Entscheidungsunterstützung mit Fuzzy-Logik. In: Biethahn J, Hönerloh A, Kühl J, et al. (Eds.), Fuzzy Set Theorie in betriebswirtschaftlichen Anwendungen. München, Germany: Vahlen-Verlag, 175-189.
    [5] North R (2019) Fuzzy Logic-based Asset Allocation. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 27: 483-512. doi: 10.1142/S0218488519500223
    [6] Klein R (2006) TOP6 - Das Lebensphasenkonzept. In: Krauß PJ (Ed.), Financial Planning in der Praxis: Private Finanzplanung erfolgreich umsetzen. Wiesbaden, Germany: Gabler Verlag, 335-354.
    [7] Böckhoff M, Stracke G (2004) Der Finanzplaner: Handbuch der privaten Finanzplanung und individuellen Finanzberatung. 2nd ed., Heidelberg, Germany: Recht und Wirtschaft.
    [8] Reittinger W (2006) Financial Planning im Wealth Management. In: Brost H, Faust M (Eds.), Private Banking und Wealth Management. Frankfurt am Main, Germany: Bankakademie-Verlag, 367-389.
    [9] Stiftung Warentest (2016) Drei Banken beraten gut. Finanztest 2: 32-36.
    [10] Stiftung Warentest (2010) Die Blamage geht weiter. Finanztest 8: 25-30.
    [11] Rommelfanger H (2008) Mathematisch-statistische Verfahren und Fuzzy-Expertensysteme. In: Everling O (Ed.), Certified Rating Analyst. München, Germany: Oldenbourg-Verlag, 159-185.
    [12] North R (2017) Individualisation of a Fuzzy System for Asset Allocation. In: Spengler T, Fichtner W, Geiger MJ, et al. (Eds.), Entscheidungsunterstützung in Theorie und Praxis. Wiesbaden, Germany: Springer Gabler, 139-168.
    [13] Rommelfanger H (1994) Fuzzy Decision Support-Systeme: Entscheiden bei Unschärfe. 2nd ed., Berlin, Germany: Springer-Verlag.
    [14] Spreemann K (1999) Vermögensverwaltung. München, Germany: Oldenbourg-Verlag.
    [15] DVFA (2006) DVFA-Rating Standards und DVFA-Validierungsstandards. DVFA-Finanzschriften. Available from: https://www.dvfa.de/fileadmin/downloads/Publikationen/Standards/rating_standards_2006.pdf.
    [16] O'Keefe RM, Balci O, Smith EP (1986) Validation of Expert System Performance. Available from: http://eprints.cs.vt.edu/archive/00000043/.
    [17] Schöneburg E (1988) Es hapert noch an den Validationsmethoden für Expertensysteme: Vorerst keine Garantie für Zuverlässigkeit. Available from: http://www.computerwoche.de/1154016.
    [18] Kurbel K (1992) Entwicklung und Einsatz von Expertensystemen: Eine anwendungsorientierte Einführung in wissensbasierte Systeme. 2nd ed., Berlin, Germany: Springer-Verlag.
    [19] Dichtl H, Kleeberg JM, Schienger C (2003) Modellgestützte Planung der Strategischen Asset Allocation: Von der Theorie zur Praxis. In: Dichtl H, Kleeberg JM, Schlenger C (Eds.), Handbuch Asset Allocation: Innovative Konzepte zur systematischen Portfolioplanung. Bad Soden, Germany: Uhlenbruch-Verlag, 27-66.
    [20] Flach J, Rommelfanger H (2002) Fuzzy-Logik basiertes Bonitätsrating. In: Oehler A (Ed.), Kreditrisikomanagement: Kernbereiche, Aufsicht und Entwicklungstendenzen. 2nd ed., Stuttgart, Germany: Schäffer-Poeschel Verlag, 1-33.
    [21] Schmidt G (2006) Persönliche Finanzplanung: Modelle und Methoden des Financial Planning. Heidelberg, Germany: Springer-Verlag.
    [22] Hoppe U (1992) Methoden des Knowledge Engineering: Ein Expertensystem für das Wertpapiergeschäft in Banken. Wiesbaden, Germany: Deutscher Universitäts-Verlag.
    [23] Stiftung Warentest (2005) Kaffee zum Geschäft. Finanztest 8: 36-39.
    [24] Stiftung Warentest (2000) Völlig verschnitten. Finanztest 5: 12-19.
    [25] Scheffels R (1996) Fuzzy-Logik in der Jahresabschlußprüfung: Entwicklung eines wissensbasierten Systems zur Analyse der Vermögens-, Finanz- und Ertragslage. Wiesbaden, Germany: Deutscher Universitäts-Verlag.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5435) PDF downloads(377) Cited by(1)

Article outline

Figures and Tables

Figures(21)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog